Share to: share facebook share twitter share wa share telegram print page

 

Felix Klein

Felix Klein
Lahir(1849-04-25)25 April 1849
Düsseldorf, Rhine, Prusia, Konfederasi Jerman[1]
Meninggal22 Juni 1925(1925-06-22) (umur 76)
Göttingen, Hanover, Prusia, Jerman
KebangsaanJerman
AlmamaterRheinische Friedrich-Wilhelms-Universität Bonn
Dikenal atasProgram Erlangen
Botol Klein
Model Beltrami–Klein
Encyclopedia of Mathematical Sciences
PenghargaanDe Morgan Medal (1893)
Copley medal (1912)
Ackermann–Teubner Memorial Award (1914)
Karier ilmiah
BidangMatematika
InstitusiUniversität Erlangen
Technische Universität München
Universität Leipzig
Georg-August-Universität Göttingen
Pembimbing doktoralJulius Plücker dan Rudolf Lipschitz
Mahasiswa doktoral
Mahasiswa ternama lainEdward Kasner

Christian Felix Klein (Jerman: [klaɪn]; 25 April 1849 – 22 Juni 1925) adalah seorang matematikawan Jerman yang dikenal berkat studinya pada teori grup, analisis kompleks, geometri non-Euklides, dan hubungan antara geometri dan teori grup. Program Erlangen yang ia terbitkan tahun 1872, mengklasifikasikan macam-macam geometri berdasarkan grup simetris dasar mereka, dan menjadi salah satu intisari yang berpengaruh besar dari perkembangan matematika kala itu.

Semasa menjabat di Universitas Göttingen, Klein mampu mengubah kampus tersebut menjadi pusat matematika dan penelitian ilmiah melalui pendirian perkuliahan-perkuliahan baru, jabatan-jabatan profesor, dan institut-institut baru. Seminar-seminarnya mencakup sebagian besar bidang matematika yang saat itu dikenal, serta penerapannya. Klein juga mencurahkan banyak waktu untuk pengajaran matematika, dan mendorong reformasi pendidikan matematika di semua tingkat kelas di Jerman dan luar negeri.

Kehidupan

Klein semasa di Leipzig.

Felix Klein dilahirkan pada 25 April 1849 di Düsseldorf dalam keluarga Prussia.[2] Ayahnya, Caspar Klein (1809–1889), adalah seorang sekretaris pemerintah Prussia yang ditempatkan di Provinsi Rhine. Ibunya bernama Sophie Elise Klein (1819–1890).[3] Felix Klein bersekolah di Gimnasium (semacam sekolah menengah) di Düsseldorf, lalu mempelajari matematika dan fisika di Universitas Bonn (1865–1866),[4] dengan niatan menjadi seorang fisikawan. Pada saat itu, Julius Plücker memiliki jabatan profesor di Bonn 1866, dalam bidang matematika dan fisika eksperimen, namun pada saat Klein menjadi asistennya di tahun 1866, minat utama Plücker adalah geometri. Klein menerima gelar doktornya, dibawah bimbingan Plücker, dari Universitas Bonn pada tahun 1868.

Plücker meninggal pada tahun 1868, belum sempat menyelesaikan bukunya yang membahas basis dari geometri garis. Klein adalah orang yang cocok untuk menyelesaikan bagian kedua buku Plücker Neue Geometrie des Raumes. Dari hal tersebut ia berkenalan dengan Alfred Clebsch, yang pindah ke Göttingen tahun 1868. Klein mengunjungi Clebsch pada tahun berikutnya, bersamaan dengan kunjungannya ke Berlin dan Paris. Pada bulan Juli 1870, saat awal perang Franco-Prusia, Klein berada di Paris dan harus pergi dari Prancis. Untuk waktu yang singkat ia bertugas sebagai seorang medis di pasukan Prusia, sebelum diangkat menjadi Privatdozent (dosen) di Göttingen pada awal 1871.

Universitas Erlangen mengangkat Klein sebagai profesor pada tahun 1872, ketika ia masih berusia 23 tahun.[5] Dalam hal ini, Klein mendapat dukungan dari Clebsch, yang menganggapnya dapat menjadi ahli matematika terbaik pada masanya. Klein tidak ingin tinggal di Erlangen, yang hanya memiliki sedikit mahasiswa, dan dengan senang hati menerima tawaran menjadi guru besar di Universitas Teknik Müchen pada tahun 1875. Di sana, ia dan Alexander von Brill mengajar mata kuliah tingkat lanjut kepada banyak mahasiswa terbaik, termasuk Adolf Hurwitz, Walther von Dyck, Karl Rohn, Carl Runge, Max Planck, Luigi Bianchi, dan Gregorio Ricci-Curbastro.

Pada tahun 1875, Klein menikah dengan Anne Hegel, cucu dari filsuf Georg Wilhelm Friedrich Hegel.[6]

Setelah menghabiskan waktu lima tahun mengajar di Müchen, Klein diangkat menjadi ketua bidang geometri di Universitas Leipzig. Rekan-rekannya termasuk Walther von Dyck, Rohn, Eduard Study, dan Friedrich Engel. Semasa Klein di Leipzig, dari tahun 1880 hingga 1886, secara fundamental mengubah hidupnya. Pada tahun 1882, kesehatannya ambruk dan dia berjuang melawan depresi selama dua tahun berikutnya.[7] Namun demikian, penelitiannya terus berlanjut; karya pentingnya tentang fungsi-fungsi sigma hipereliptik, yang diterbitkan diantara tahun 1886 dan 1888, berasal dari periode ini.

Klein (1912). Lukisan oleh Max Liebermann.

Klein menerima jabatan guru besar di Universitas Göttingen pada tahun 1886. Sejak saat itu, hingga pensiun pada tahun 1913, ia berusaha untuk membangun kembali Göttingen sebagai pusat penelitian matematika di dunia. Namun, ia tidak pernah berhasil memindahkan perannya sebagai pengembang geometri di Leipzig, ke Göttingen. Ia mengajar berbagai mata kuliah di Göttingen, terutama yang berhubungan dengan antarmuka antara matematika dan fisika, khususnya mekanika dan teori potensial.

Fasilitas penelitian yang dibangun Klein di Göttingen menjadi model untuk fasilitas terbaik di dunia. Dia memperkenalkan pertemuan diskusi mingguan, dan menciptakan ruang baca dan perpustakaan matematika. Pada tahun 1895, Klein merekrut David Hilbert dari Universitas Königsberg. Penunjukan ini terbukti sangat penting; Hilbert terus meningkatkan keunggulan Göttingen dalam bidang matematika hingga ia pensiun pada tahun 1932.

Di bawah redaksi yang dipimpin Klein, Mathematische Annalen menjadi salah satu jurnal matematika terbaik di dunia. Didirikan oleh Clebsch, jurnal ini berkembang di bawah manajemen Klein, menyaingi, dan akhirnya melampaui Crelle's Journal, yang berbasis di Universitas Berlin. Klein membentuk tim editor kecil yang bertemu secara teratur, membuat keputusan dengan semangat demokratis. Jurnal ini awalnya mengkhususkan diri pada bidang analisis kompleks, geometri aljabar, dan teori invarian. Jurnal ini juga memberikan tempat publikasi yang penting untuk analisis real dan teori grup.

Pada tahun 1893, Klein menjadi pembicara utama di Kongres Matematika Internasional yang diadakan di Chicago sebagai bagian dari Pameran Dunia Columbus.[8] Berkat usaha Klein, Göttingen mulai menerima perempuan pada tahun 1893. Dia membimbing tesis Ph.D. pertama di Göttingen yang ditulis oleh perempuan. Tesis tersebut disusun oleh Grace Chisholm Young, seorang mahasiswa Inggris dari Arthur Cayley, yang dikagumi Klein. Pada tahun 1897, Klein menjadi anggota luar negeri Akademi Kesenian dan Ilmu Pengetahuan Kerajaan Belanda.[9]

Sekitar tahun 1900, Klein mulai tertarik dengan pengajaran matematika di sekolah. Pada tahun 1905, ia berperan penting dalam merumuskan rencana yang merekomendasikan agar geometri analitis, yang berisi dasar-dasar kalkulus diferensial dan integral, dan konsep fungsi diajarkan di sekolah menengah.[10][11] Rekomendasi ini secara bertahap diterapkan di banyak negara di dunia. Pada tahun 1908, Klein terpilih sebagai presiden Komisi Internasional untuk Pengajaran Matematika (ICMI) pada Kongres Matematikawan Internasional di Roma.[12] Di bawah bimbingannya, bagian Jerman dari Komisi tersebut menerbitkan banyak buku tentang pengajaran matematika di semua tingkatan di Jerman.

London Mathematical Society menganugerahi Klein dengan Medali De Morgan pada tahun 1893. Ia terpilih sebagai anggota Royal Society pada tahun 1885, dan dianugerahi Medali Copley pada tahun 1912. Dia pensiun pada tahun berikutnya karena kesehatannya yang buruk, tetapi terus mengajar matematika di rumahnya selama beberapa tahun berikutnya. Ia meninggal di Göttingen pada tahun 1925.

Klein adalah salah satu dari 93 penandatangan Manifesto Sembilan Puluh Tiga, sebuah dokumen yang ditulis untuk mendukung invasi Jerman ke Belgia pada tahap awal Perang Dunia I.

Karya

Konstruksi dari sebuah botol Klein dari dua pita Möbius

Disertasi Klein, terkait geometri garis dan penerapannya dalam mekanika, mengelompokkan kompleks-kompleks garis derajat dua menggunakan teori Weierstrass tentang pembagi elementer.

Penemuan penting pertama oleh Klein terjadi pada tahun 1870. Berkerja sama dengan Sophus Lie, ia menemukan sifat-sifat fundamental dari garis-garis asimtotik pada permukaan Kummer. Mereka selanjutnya mempelajari kurva-W, yakni kurva yang invarian dibawah sebuah grup transformasi projektif. Lie adalah orang yang memperkenalkan konsep grup kepada Klein, yang berperan besar pada karya-karyanya nanti. Klein juga mempelajari grup dari Camille Jordan.[13]

Klein mendesain “botol Klein” yang dinamai menurut namanya, suatu permukaan tertutup satu-sisi yang tidak dapat sertakan (embedded) dalam ruang Euklides tiga dimensi, tetapi dapat dibenamkan (immersed) di ruang tiga dimensi sebagai silinder yang salah satu ujungnya memasuki dinding silider untuk bergabung dengan ujung lainnya dari “dalam”. Hal ini dapat dibuat dalam ruang Euklides dimensi 4 dan lebih tinggi. Konsep botol Klein dirancang sebagai bentuk tiga dimensi dari pita Möbius, dengan salah satu metode konstruksi dilakukan dengan menempelkan ujung-ujung dari dua pita Möbius.[14]

Selama tahun 1890-an, Klein mulai mempelajari fisika matematis secara lebih intensif, menulis tentang giroskop bersama Arnold Sommerfeld.[15] Selama tahun 1894, dia memprakarsai ide ensiklopedia matematika termasuk penerapannya, yang kemudian menjadi Encyklopädie der mathematischen Wissenschaften. Usaha ini, yang bertahan hingga tahun 1935, memberikan referensi standar yang penting dan bernilai abadi.[16]

Program Erlangen

Model geometri non-Euklides yang diusulkan oleh Klein (kiri) dan Poincaré (kanan)

Pada tahun 1871, ketika berada di Göttingen, Klein membuat penemuan besar dalam bidang geometri. Dia menerbitkan dua makalah On the So-called Non-Euclidean Geometry yang menunjukkan bahwa geometri Euklides dan non-Euklides dapat dianggap sebagai ruang metrik yang ditentukan oleh metrik Cayley-Klein. Wawasan ini memiliki konsekuensi bahwa geometri non-Euklides konsisten jika dan hanya jika geometri Euklides konsisten, memberikan status yang sama pada geometri Euklides dan non-Euklides, dan mengakhiri semua kontroversi tentang geometri non-Euklides. Arthur Cayley menganggap argumen Klein melingkar, dan tidak mau menerimanya.

Sintesis/intisari Klein tentang geometri sebagai studi tentang sifat-sifat ruang yang invarian di bawah grup transformasi tertentu, yang dikenal sebagai program Erlangen (1872), sangat mempengaruhi evolusi matematika. Program ini diawali dengan kuliah perdana Klein sebagai profesor di Erlangen, meskipun itu bukanlah pidato yang sebenarnya ia berikan pada kesempatan tersebut. Program ini mengusulkan sistem geometri terpadu yang telah menjadi metode yang diterima saat ini. Klein menunjukkan bagaimana sifat-sifat esensial dari suatu geometri dapat diwakili oleh suatu grup transformasi yang mempertahankan sifat-sifat tersebut. Dengan demikian, definisi geometri dalam program ini mencakup geometri Euklides dan non-Euklides.

Saat ini, pentingnya kontribusi-kontribusi Klein terhadap geometri terlihat jelas. Banyak kontribusi tersebut telah menjadi bagian dari pemikiran matematika sehingga sulit untuk menghargai inovasi mereka ketika pertama kali disajikan, maupun untuk memahami bahwa banyak orang-orang semasa Klein yang tidak langsung menerima kontribusi tersebut.

Analisis kompleks

Klein melihat karyanya pada analisis kompleks sebagai kontribusi utamanya pada matematika, khususnya karyanya pada:

Dalam bukunya tahun 1884 tentang icosahedron, Klein membuat teori fungsi automorfik, mengaitkan aljabar dengan geometri. Poincaré telah menerbitkan garis besar teorinya tentang fungsi automorfik pada tahun 1881, menghasilkan persaingan yang bersahabat antara ia dan Klein. Keduanya berusaha untuk menyatakan dan membuktikan teorema penyeragaman (uniformization theorem) yang akan membangun teori baru secara lebih lengkap. Klein berhasil merumuskan teorema tersebut dan menggambarkan strategi untuk membuktikannya. Dia menemukan bukti tersebut dalam serangan asma pada pukul 2:30 pagi tanggal 23 Maret 1882.[17]

Klein meringkas karyanya tentang fungsi modular automorfik dan eliptik dalam sebuah risalah empat jilid, yang ditulis bersama Robert Fricke selama sekitar 20 tahun.

Beberapa karya pilihan

Bibliografi

Referensi

  1. ^ Snyder, Virgil (1922). "Klein's Collected Works". Bull. Amer. Math. Soc. 28 (3): 125–129. doi:10.1090/S0002-9904-1922-03510-0alt=Dapat diakses gratis. Diarsipkan dari versi asli tanggal 2020-06-05. Diakses tanggal 2021-05-01. 
  2. ^ Snyder, Virgil (1922). "Klein's Collected Works". Bull. Amer. Math. Soc. 28 (3): 125–129. doi:10.1090/S0002-9904-1922-03510-0alt=Dapat diakses gratis. 
  3. ^ Rüdiger Thiele (2011). Felix Klein in Leipzig: mit F. Kleins Antrittsrede, Leipzig 1880 (dalam bahasa Jerman). Ed. am Gutenbergplatz. hlm. 195. ISBN 978-3-937219-47-9. 
  4. ^ Halsted, George Bruce (1894). "Biography: Felix Klein". The American Mathematical Monthly. 1 (12): 416–420. doi:10.2307/2969034. JSTOR 2969034. 
  5. ^ Ivor Grattan-Guinness, ed. (2005). Landmark Writings in Western Mathematics 1640–1940. Elsevier. hlm. 546. ISBN 978-0-08-045744-4. 
  6. ^ Chislenko, Eugene; Tschinkel, Yuri. "The Felix Klein Protocols", Notices of the American Mathematical Society, August 2007, Volume 54, Number 8, pp. 960–970.
  7. ^ Reid, Constance (1996). Hilbert (dalam bahasa Inggris). New York: Springer-Verlag. hlm. 19. ISBN 9781461207399. 
  8. ^ Case, Bettye Anne, ed. (1996). "Come to the Fair: The Chicago Mathematical Congress of 1893 by David E. Rowe and Karen Hunger Parshall". A Century of Mathematical Meetings. American Mathematical Society. hlm. 64. ISBN 9780821804650. 
  9. ^ "Felix C. Klein (1849–1925)". Royal Netherlands Academy of Arts and Sciences. Diakses tanggal 22 July 2015. 
  10. ^ Gary McCulloch; David Crook, ed. (2013). The Routledge International Encyclopedia of Education. Routledge. hlm. 373. ISBN 978-1-317-85358-9. 
  11. ^ Alexander Karp; Gert Schubring, ed. (2014). Handbook on the History of Mathematics Education. Springer Science & Business Media. hlm. 499–500. ISBN 978-1-4614-9155-2. 
  12. ^ Alexander Karp; Gert Schubring, ed. (2014). Handbook on the History of Mathematics Education. Springer Science & Business Media. hlm. 503. ISBN 978-1-4614-9155-2. 
  13. ^ John J. O'Connor and Edmund F. Robertson. Felix Klein di MacTutor archive.
  14. ^ Numberphile (22 June 2015), Klein Bottles – Numberphile, diarsipkan dari versi asli tanggal 11 December 2021, diakses tanggal 26 April 2017 
  15. ^ de:Werner Burau and de:Bruno Schoeneberg "Klein, Christian Felix." Complete Dictionary of Scientific Biography. 2008. Retrieved 4 December 2014 from Encyclopedia.com: http://www.encyclopedia.com/doc/1G2-2830902326.html
  16. ^ Ivor Grattan-Guinness (2009) Routes of Learning: Highways, Pathways, Byways in the History of Mathematics, pp 44, 45, 90, Johns Hopkins University Press, ISBN 0-8018-9248-1
  17. ^ Abikoff, William (1981). "The Uniformization Theorem". The American Mathematical Monthly. 88 (8): 574–592. doi:10.2307/2320507. ISSN 0002-9890. JSTOR 2320507. 
  18. ^ Cole, F. N. (1892). "Vorlesungen über die Theorie der elliptischen Modulfunktionen von Felix Klein, Erste Band" (PDF). Bull. Amer. Math. Soc. 1 (5): 105–120. doi:10.1090/S0002-9904-1892-00049-3alt=Dapat diakses gratis. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  19. ^ White, Henry S. (1894). "Review: The Evanston Colloquium: Lectures on Mathematics by Felix Klein" (PDF). Bull. Amer. Math. Soc. 3 (5): 119–122. doi:10.1090/s0002-9904-1894-00190-6alt=Dapat diakses gratis. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  20. ^ Scott, Charlotte Angas (1896). "Review: Vorträge über ausgewählte Fragen der Elementargeometrie von Felix Klein" (PDF). Bull. Amer. Math. Soc. 2 (6): 157–164. doi:10.1090/s0002-9904-1896-00328-1alt=Dapat diakses gratis. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  21. ^ a b Hutchinson, J. I. (1903). "Review: Vorlesungen über die Theorie der automorphen Functionen von Robert Fricke & Felix Klein, Erste Band & Zweiter Band" (PDF). Bulletin of the American Mathematical Society. 9 (9): 470–492. doi:10.1090/S0002-9904-1903-01020-9. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  22. ^ Thompson, Henry Dallas (1899). "Review: Mathematical Theory of the Top by Felix Klein" (PDF). Bull. Amer. Math. Soc. 5 (10): 486–487. doi:10.1090/s0002-9904-1899-00643-8alt=Dapat diakses gratis. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  23. ^ Bôcher, Maxime (1902). "Review: Gauss' wissenschaftlichen Tagebuch, 1796—1814. Mit Anmerkungen von Felix Klein" (PDF). Bull. Amer. Math. Soc. 9 (2): 125–126. doi:10.1090/s0002-9904-1902-00959-2alt=Dapat diakses gratis. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  24. ^ Smith, David Eugene (1928). "Review: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert von Felix Klein. Erste Band" (PDF). Bulletin of the American Mathematical Society. 34 (4): 521–522. doi:10.1090/S0002-9904-1928-04589-5. Diarsipkan dari versi asli (PDF) tanggal 9 October 2022. 
  25. ^ Allen, Edward Switzer (1929). "Three books on non-euclidean geometry". Bull. Amer. Math. Soc. 35: 271–276. doi:10.1090/S0002-9904-1929-04726-8alt=Dapat diakses gratis. 

Bacaan lebih lanjut

Pranala luar

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya