Medan berfungsi sebagai gagasan dasar dalam beberapa ranah matematika. Ini mencakup berbagai cabang analisis matematika yang didasarkan pada medan dengan struktur tambahan. Teorema dasar dalam analisis bergantung pada sifat struktural medan bilangan riil. Yang terpenting untuk tujuan aljabar, medan yang digunakan sebagai skalar untuk ruang vektor, yang merupakan konteks umum standar untuk aljabar linear. Medan bilangan bagian dari medan bilangan rasional, dipelajari secara mendalam di teori bilangan. Medan fungsi dapat membantu mendeskripsikan sifat objek geometris.
Definisi
Contoh sebuah lapangan adalah himpunan bilangan rasional Q. Dalam Q terdapat empat operasi dasar: penjumlahan bersama dengan pengurangan, dan perkalian dengan pembagian. Secara intuitif, suatu lapangan adalah himpunan bilangan yang memiliki empat operasi seperti itu. Agar memenuhi syarat sebagai lapangan, operasi-operasi tersebut harus memenuhi aksioma tertentu.
Sebuah lapangan adalah sebuah himpunan, misalkan dinamakan F, bersama dengan dua operasi biner, yang biasanya dinamakan sebagai penambahan dan perkalian, masing-masing dilambangkan sebagai + dan ·, sehingga aksioma berikut berlaku:
Tertutup terhadap penambahan dan perkalian
Untuk semua a, b anggota F, baik a + b dan a · b ada dalam F (atau, dengan rumusan lebih formal, + dan . adalah operasi biner terhadap F).
Untuk semua a dan b dalam F, kesamaan berikut berlaku:
a + b = b + a dan
a · b = b · a.
Unsur identitas dalam penambahan dan perkalian
Terdapat anggota atau unsur F, yang dinamakan unsur identitas penambahan yang dilambangkan sebagai 0, sehingga untuk semua a dalam F,
a + 0 = a. Begitu pula, terdapat anggota, yang dinamakan sebagai unsur identitas perkalian yang dilambangkan dengan 1, sehingga untuk semua a dalam F,
a · 1 = a. Unsur identitas penambahan dan perkalian disyaratkan berbeda, untuk alasan teknis.
Invers penambahan dan perkalian
Untuk setiap a dalam F, terdapat sebuah anggota, -a dalam F, sehingga
a + (−a) = 0. Dengan cara yang sama, untuk setiap a dalam F selain 0, terdapat anggota a−1 in F,sehingga
a · a−1 = 1. (Unsur a + (−b) dan a · b−1 masing-masing dinamakan a − b and a/b) Dengan kata lain, terdapat operasi pengurangan dan pembagian.
Bilangan rasional telah banyak digunakan jauh sebelum elaborasi konsep lapangan.
Itu adalah bilangan yang dapat ditulis sebagai pecahana/b, dimana a dan b adalah bilangan bulat, dan b ≠ 0. Kebalikan aditif dari pecahan tersebut adalah −a/b, dan pembalikan perkalian (asalkan a ≠ 0) adalah b/a, yang bisa dilihat sebagai berikut:
Aksioma bidang yang diperlukan secara abstrak direduksi menjadi sifat standar bilangan rasional. Misalnya hukum distributivitas dapat dibuktikan sebagai berikut:[1]
Bilangan riilR, dengan operasi penjumlahan dan perkalian yang biasa, juga membentuk bidang. Bilangan kompleksC terdiri dari ekspresi
a + bi, dengan a, b,
dimana i adalah unit imajiner, yaitu bilangan (non-nyata) memuaskan i2 = −1.
Penjumlahan dan perkalian bilangan real didefinisikan sedemikian rupa sehingga ekspresi jenis ini memenuhi semua aksioma medan dan karenanya berlaku untuk C. Misalnya, penegakan hukum distributif
(a + bi)(c + di) = ac + bci + adi + bdi2 = ac−bd + (bc + ad)i.
Ini langsung bahwa ini lagi-lagi merupakan ekspresi dari tipe di atas, dan bilangan kompleks membentuk bidang. Bilangan kompleks dapat direpresentasikan secara geometris sebagai titik dalam bidang. dengan koordinat kartesius yang diberikan oleh bilangan real dari ekspresi yang mendeskripsikannya, atau sebagai panah dari asal ke titik-titik ini, ditentukan oleh panjangnya dan sudut tertutup dengan beberapa. Penambahan kemudian sesuai dengan penggabungan panah ke jajaran genjang intuitif (menambahkan koordinat Kartesius), dan perkaliannya, kurang intuitif, menggabungkan putaran dan skala panah (menambahkan sudut dan mengalikan panjangnya). Bidang bilangan real dan kompleks digunakan di seluruh matematika, fisika, teknik, statistik, dan banyak disiplin ilmu lainnya.
Di zaman kuno, beberapa masalah geometris menyangkut kelayakan (dalam) konstruksi bilangan tertentu dengan kompas dan garis lurus. Misalnya, orang Yunani tidak mengetahui bahwa secara umum tidak mungkin untuk membagi dua sudut tertentu dengan cara ini. Masalah ini dapat diselesaikan dengan menggunakan bidang bilangan konstruksibel.[2] Bilangan konstruktif riil, menurut definisi, adalah panjang segmen garis yang dapat dibangun dari titik 0 dan 1 dalam banyak langkah tak terhingga hanya dengan menggunakan kompas dan garis lurus. Angka-angka ini, diberkahi dengan operasi bidang bilangan real, terbatas pada bilangan yang dapat dibangun, membentuk bidang, yang mencakup bidang Q of angka rasional. Ilustrasi menunjukkan konstruksi akar kuadrat dari bilangan yang dapat dibangun, tidak harus terkandung di dalamnya Q. Menggunakan label dalam ilustrasi, buat segmen AB, BD, dan setengah lingkaran berakhir AD (pusatkan di titik tengahC), yang memotong garis tegak lurus melalui B pada satu titik F, pada jarak tepat dari B jika BD memiliki panjang satu.
Tidak semua bilangan real dapat dibangun. Dapat ditunjukkan bahwa bukanlah bilangan yang dapat dibangun, yang menyiratkan bahwa tidak mungkin untuk membangun dengan kompas dan meluruskan panjang sisi sebuah kubus dengan volume 2, masalah lain yang ditimbulkan oleh orang Yunani kuno.
Bidang dengan empat elemen
Penambahan
Perkalian
+
O
I
A
B
O
O
I
A
B
I
I
O
B
A
A
A
B
O
I
B
B
A
I
O
·
O
I
A
B
O
O
O
O
O
I
O
I
A
B
A
O
A
B
I
B
O
B
I
A
Selain sistem bilangan yang sudah dikenal seperti rasio, ada contoh bidang lain yang kurang langsung. Contoh berikut adalah bidang yang terdiri dari empat elemen yang disebut O, I, A, dan B. Notasi O memainkan peran elemen identitas aditif (dilambangkan 0 dalam aksioma di atas), dan I adalah identitas perkalian (dilambangkan 1 dalam aksioma di atas). Aksioma medan dapat diverifikasi dengan menggunakan beberapa teori medan lagi, atau dengan perhitungan langsung. Sebagai contoh,
A · (B + A) = A · I = A, yang sama dengan A · B + A · A = I + B = A, seperti yang dipersyaratkan oleh distribusi.
Bidang ini disebut bidang hingga dengan empat elemen, dan dilambangkan F4 or GF(4).[3] Bagian terdiri dari O and I (disorot dengan warna merah pada tabel di sebelah kanan) juga merupakan bidang, yang dikenal sebagai bidang binerF2 atau GF(2). Dalam konteks ilmu komputer dan Aljabar Boolean, O dan I masing-masing sering dilambangkan dengan false dan true , penambahan kemudian dilambangkan XOR (eksklusif atau), dan perkalian dilambangkan AND. Dengan kata lain, struktur bidang biner adalah struktur dasar yang memungkinkan dilakukannya komputasi dengan bit.
Gagasan dasar
Dalam bagian ini, F menunjukkan medan sembarang dan a, serta belemen sembarang dari F.
Konsekuensi dari definisi
Satu memiliki a · 0 = 0 dan −a = (−1) · a. Secara khusus, seseorang dapat menyimpulkan kebalikan aditif dari setiap elemen segera setelah dia mengetahui –1.[1]
Jika ab = 0 kemudian a atau b harus 0, karena, jika a ≠ 0, kemudian
b = (a–1a)b = a–1(ab) = a–1⋅0 = 0. Ini berarti bahwa setiap bidang adalah domain integral.
Selain itu, properti berikut ini berlaku untuk semua elemen a dan b:
−0 = 0
1−1 = 1
(−(−a)) = a
(a–1)−1 = a
(–a) · b = a · (−b) = −(a · b)
Aditif dan grup perkalian dari sebuah medan
Aksioma sebuah medan F adalah grup abelian di bawah tambahan. Grup ini disebut grup aditif pada bidang, dan terkadang dilambangkan dengan (F, +) ketika hanya menandai sebagai F yang hanya membingungkan.
Demikian pula, elemen bukan nol dari F membentuk grup abelian dalam perkalian yang disebut grup perkalian, dan dilambangkan dengan (F \ {0}, ·) untuk F \ {0} atau F*.
Medan didefinisikan sebagai himpunan F dengan dua operasi yang dilambangkan sebagai penjumlahan dan perkalian sehingga F adalah grup abelian dalam penjumlahan, F \ {0} adalah grup abelian dalam perkalian,[catatan 1] dan perkalian adalah distributif di atas penjumlahan.[nb 1] Oleh karena itu, beberapa pernyataan dasar tentang medan diperoleh dengan menerapkan fakta umum grup. Misalnya, penjumlahan dan perkalian inversi −a dan a−1 ditentukan secara unik oleh a.
Persyaratan yang mengikuti 1 ≠ 0, karena 1 adalah elemen identitas grup tidak berisi 0.[4] Jadi, gelanggang trivial yang terdiri dari satu elemen adalah bukan medan.
Selain perkalian dua elemen F, dimungkinkan untuk mendefinisikan produk n ⋅ a dari elemen arbitrer a dari F dengan bilangan bulat positif n sebagai jumlah lipat-n
a + a + ⋅⋅⋅ + a (yang merupakan elemen dari F.)
Jika tidak ada bilangan bulat positif, maka
n ⋅ 1 = 0,
maka F dikatakan memiliki karakteristik 0.[5] Misalnya medan bilangan rasional Q memiliki karakteristik 0 karena tidak ada bilangan bulat positif n adalah nol. Sebaliknya, jika adalah bilangan bulat positif n yang memenuhi persamaan ini, bilangan bulat positif terkecil dapat ditampilkan sebagai bilangan prima. Biasanya dilambangkan dengan p dan kemudian medan dikatakan memiliki karakteristik p.
Misalnya, medan F4 memiliki karakteristik 2 dalam[catatan 2]I + I = O.
Jika F memiliki karakteristik p, maka p⋅a=0 untuk semua a dalam F. Ini menjelaskan
(a + b)p = ap + bp,
karena semua koefisien binomial lainnya yang muncul dalam rumus binomial habis dibagi p. Maka, ap := a ⋅ a ⋅ ... ⋅ a (faktor p) adalah kuasa-p, yaitu, hasil kali lipat-p dari elemen a. Oleh karena itu, peta Frobenius
Fr: F → F, x ⟼ xp
kompatibel dengan penambahan dalam F (dan juga dengan perkalian), dan merupakan homomorfisme medan.[6] Adanya homomorfisme ini membuat medan dengan karakteristik p sangat berbeda dengan bidang dengan karakteristik 0.
Submedan dan medan utama
Sebuah submedanE dari medan F adalah himpunan bagian dari F yang merupakan medan yang terkait dengan operasi medan dari F. Setara dengan E adalah himpunan bagian dari F yang merupakan 1, dan sebagai penutupan dengan penjumlahan, perkalian, aditif invers dan perkalian invers dari elemen bukan nol. Maka 1 ∊ E, untuk semua a, b ∊ E kedua a + b dan a · b adalah E, dan untuk semua a ≠ 0 dal5 E, kedua –a dan 1/a adalah E.
Medan hingga (juga disebut medan Galois) adalah medan dengan elemen hingga dimana jumlahnya yang disebut sebagai urutan medan. Contoh pengantar di atas F4 adalah medan dengan empat elemen. Submedan F2 adalah medan terkecil, karena menurut definisi medan memiliki setidaknya dua elemen berbeda 1 ≠ 0.
Kolom hingga yang sederhana, dengan tatanan utama langsung diakses menggunakan aritmetika modular. Untuk bilangan bulat positif tetap n, aritmetika "modulo n" artinya melakukan dengan angka
Z/nZ = {0, 1, ..., n − 1}.
Penambahan dan perkalian pada himpunan ini dilakukan dengan melakukan operasi yang dimaksud himpunan bilangan bulat Z, membagi dengan n dan mengambil sisanya sebagai hasil. Konstruksi ini menghasilkan bidang persis jika n adalah bilangan prima. Misalnya mengambil bilangan prima n = 2 hasil di bidang yang disebutkan di atas F2. Untuk n = 4 dan secara lebih umum, untuk setiap bilangan komposit (yaitu, bilangan apa pun n yang dapat diekspresikan sebagai produk n = r⋅s dari dua bilangan asli yang lebih kecil), Z/nZ bukan bidang: produk dari dua elemen bukan nol adalah nol karena r⋅s = 0 pada Z/nZ, yang, seperti yang dijelaskan di atas, dengan Z/nZ dari menjadi lapangan. Lapangan Z/pZ dengan p elemen (p menjadi prima) dibangun dengan cara ini biasanya dilambangkan dengan Fp.
Setiap bidang terbatas yang dimiliki F adalah q = pn elemen, di mana p adalah bilangan prima dan n ≥ 1. Pernyataan ini berlaku karena F dapat dilihat sebagai ruang vektor di atas bidang utamanya. dimensi dari ruang vektor ini harus terbatas, katakanlah n , yang menyiratkan pernyataan yang ditegaskan.[7]
Bidang dengan q = pn elemen dapat dibuat sebagai bidang pemisah dari polinomial
f(x) = xq − x.
Bidang pemisahan seperti itu merupakan perpanjangan dari Fp di mana polinomial f memiliki q nol. Ini berarti f memiliki angka nol sebanyak mungkin karena derajat dari f adalah q. Untuk q = 22 = 4, itu dapat diperiksa kasus per kasus menggunakan tabel perkalian di atas yang keempat elemennya F4 memenuhi persamaan x4 = x, jadi mereka adalah nol f. Sebaliknya, pada F2, f hanya memiliki dua angka nol (yaitu 0 dan 1), jadi f tidak dibagi menjadi faktor linier dalam bidang yang lebih kecil ini. Menguraikan lebih lanjut pengertian teori medan dasar, dapat ditunjukkan bahwa dua bidang berhingga dengan urutan yang sama adalah isomorfik.[8] Oleh karena itu, adalah kebiasaan untuk menyebut bidang berhingga dengan elemen q , dilambangkan dengan Fq atau GF(q).
Sejarah
Secara historis, tiga disiplin ilmu aljabar mengarah pada konsep bidang: soal menyelesaikan persamaan polinomial, teori bilangan aljabar, dan geometri aljabar.[9] Langkah pertama menuju gagasan bidang dibuat pada tahun 1770 oleh Joseph-Louis Lagrange, yang mengamati bahwa mengubah angka nol x1, x2, x3 dari polinomial kubik dalam pernyataan tersebut
(x1 + ωx2 + ω2x3)3
(dengan ω menjadi akar persatuan ketiga) hanya menghasilkan dua nilai. Dengan cara ini, Lagrange secara konseptual menjelaskan metode solusi klasik Scipione del Ferro dan François Viète, yang melanjutkan dengan mengurangi persamaan kubik untuk x yang tidak diketahui menjadi persamaan kuadrat untuk x3.[10] Bersama dengan pengamatan serupa untuk persamaan derajat 4, Lagrange menghubungkan apa yang akhirnya menjadi konsep bidang dan konsep grup.[11]Vandermonde, juga pada tahun 1770, dan secara lebih luas, Carl Friedrich Gauss, dalam karyanya Disquisitiones Arithmeticae (1801), mempelajari persamaan
xp = 1
untuk bilangan prima p dan, lagi-lagi menggunakan bahasa modern, hasil siklik grup Galois. Gauss menyimpulkan bahwa regular p-gon dapat dibangun jika p = 22k + 1. Berdasarkan karya Lagrange, Paolo Ruffini menyatakan (1799) bahwa persamaan kuintik s (persamaan polinomial derajat 5) tidak dapat diselesaikan secara aljabar; Namun, argumennya salah. Celah ini diisi oleh Niels Henrik Abel pada tahun 1824.[12]Évariste Galois, pada tahun 1832, merancang kriteria yang diperlukan dan cukup agar persamaan polinomial dapat dipecahkan secara aljabar, sehingga menetapkan efek yang sekarang dikenal sebagai teori Galois. Baik Abel dan Galois bekerja dengan apa yang sekarang disebut bidang angka aljabar, tetapi tidak memahami gagasan eksplisit tentang bidang, atau pun grup.
Pada tahun 1871 Richard Dedekind diperkenalkan, untuk satu set bilangan real atau kompleks yang ditutup di bawah empat operasi aritmatika, kata Jerman Körper , yang berarti "tubuh" atau "korpus" (untuk menyarankan entitas yang tertutup secara organik). Istilah Inggris "field" diperkenalkan oleh (Moore 1893).[13]
Yang kami maksud dengan bidang adalah setiap sistem tak terbatas dari bilangan real atau kompleks yang begitu tertutup dengan sendirinya dan menyempurnakan penjumlahan, pengurangan itu, perkalian, dan pembagian salah satu dari dua bilangan ini lagi-lagi menghasilkan bilangan sistem.
Pada tahun 1881 Leopold Kronecker mendefinisikan apa yang dia sebut sebagai domain rasionalitas , yang merupakan bidang pecahan rasional dalam istilah modern. Gagasan Kronecker tidak mencakup bidang semua bilangan aljabar (yang merupakan bidang dalam pengertian Dedekind), tetapi di sisi lain lebih abstrak daripada Dedekind karena tidak membuat asumsi khusus tentang sifat elemen suatu bidang. Kronecker menafsirkan bidang seperti Q(π) secara abstrak sebagai bidang fungsi rasional Q(X). Sebelum ini, contoh bilangan transendental telah diketahui sejak karya Joseph Liouville pada tahun 1844, sampai Charles Hermite (1873) dan Ferdinand von Lindemann (1882) membuktikan transendensi e dan π.[15]
Medan dengan struktur tambahan
Sejak medan ada di mana-mana dalam matematika dan seterusnya, beberapa penyempurnaan konsep telah disesuaikan dengan kebutuhan bidang matematika tertentu.
Medan F disebut medan tatanan jika terdapat dua elemen yang dapat dibandingkan, sehingga x + y ≥ 0 dan xy ≥ 0 dengan x ≥ 0 dan y ≥ 0. Misalnya, bilangan riil membentuk Medan tatanan, dengan tatanan seperti biasa ≥. Teorema Artin–Schreier menyatakan bahwa suatu medan diurutkan jika dan hanya jika itu adalah medan riil secara formal, yang berarti bahwa persamaan kuadrat apa pun
Sebuah medan Archimedean adalah medan yang diurutkan sedemikian rupa sehingga untuk setiap elemen terdapat ekspresi hingga
1 + 1 + ··· + 1
yang nilainya lebih besar dari elemen itu, artinya tidak ada elemen tak hingga. Sama halnya, medan yang tidak digunakan infinitesimal (elemen lebih kecil dari semua bilangan rasional); atau, ekuivalen medan isomorfik ke submedan dari R.
Bidang yang diurutkan adalah Dedekind-complete jika semua batas atas, batas bawah (lihat kelengkapan Dedekind) dan batas. Secara lebih formal, setiap himpunan bagian hingga dari F harus memiliki batas atas terkecil. Setiap medan lengkap tetap menggunakan Archimedean,[18] karena dalam medan non-Archimedean tidak terdapat rasional yang sangat kecil atau paling tidak positif, darimana tatanannya 1/2, 1/3, 1/4, ..., setiap elemen yang lebih besar dari kecil, tidak memiliki batas.
Karena setiap subkolom riil menggunakan celah seperti itu, R adalah kolom tatanan lengkap unik, hingga isomorfisme.[19] Beberapa hasil dasar dalam kalkulus mengikuti langsung dari karakterisasi riil ini.
HiperriilR* membentuk Medan tatanan yang bukan Archimedean. Ini adalah ekstensi dari riil yang diperoleh dengan memasukkan bilangan tak hingga dan infinitesimal tak hingga. Ini lebih besar masing-masing lebih kecil dari bilangan riil. Hiperriil membentuk dasar dasar analisis non-standar.
Medan topologi
Perbaikan lain dari pengertian bidang adalah medan topologi, dimana himpunan F adalah ruang topologi, maka semua operasi medan (penambahan, perkalian, peta a ↦ −a dan a ↦ a−1) adalah peta kontinu sehubungan dengan topologi ruang.[20]
Topologi semua medan yang dibahas di bawah ini diinduksi dari metrik, yaitu fungsi
d : F × F → R,
yang mengukur jarak antara dua elemen F.
Pelengkapan dari F adalah medan lain dimana "celah" di medan asli F. Misalnya, bilangan irasionalx, misal x = √2, adalah "celah" dalam rasio Q dalam arti bahwa ini adalah bilangan riil yang didekati secara acak oleh bilangan rasional p/q, dalam arti jarak x dan p/q diberikan nilai mutlak| x – p/q |.
Tabel berikut mencantumkan beberapa contoh konstruksi ini. Kolom keempat menunjukkan contoh nol urutan, yaitu, urutan yang batasnya (untuk n → ∞) adalah nol.
Medan diferensial adalah medan yang dilengkapi dengan turunan, yaitu, memungkinkan untuk mengambil turunan elemen di medan.[21] Misalnya, medan R(X), dengan turunan standar polinomial membentuk medan diferensial. Medan ini adalah pusat teori Galois diferensial, varian dari teori Galois yang berhubungan dengan persamaan diferensial linear.
Gagasan terkait
Selain struktur tambahan dengan menggunakan medan, medan menerima berbagai gagasan terkait lainnya. Karena dalam medan 0 ≠ 1, medan memiliki setidaknya dua elemen. Meskipun demikian, ada konsep medan dengan satu elemen yang disarankan untuk menjadi batas medan hingga Fp, karena p cenderung 1.[22] Selain gelanggang pembagian, ada berbagai yang lebih lemah lainnya, struktur aljabar yang terkait dengan medan seperti medan kuasi, medan dekat dan medan semimedan.
Ada juga kelas kesesuai dengan struktur medan, yang terkadang disebut Medan (atau Field), dengan huruf besar M. Bilangan surriil membentuk medan riil, dan akan menjadi medan kecuali fakta bahwa mereka adalah kelas yang tepat, bukan satu himpunan. Angka adalah konsep dari teori permainan, untuk medan seperti itu juga.[23]
Gelanggang pembagian
Menjatuhkan satu atau beberapa aksioma dalam definisi medan mengarah ke struktur aljabar lainnya. Seperti disebutkan di atas, gelanggang komutatif memenuhi semua aksioma medan, kecuali untuk invers perkalian. Menjatuhkan kondisi bahwa perkalian bersifat komutatif mengarah ke konsep gelanggang pembagian atau medan miring.[nb 2] Gelanggang pembagian satu-satunya yang berdimensi-hingga vektor-R ruang R sendiri, C (yang merupakan medan), kuaternionH (dimana perkalian tidak komutatif), dan oktonionO (dimana perkalian tidak bersifat komutatif atau asosiatif). Fakta ini dibuktikan dengan menggunakan metode topologi aljabar pada tahun 1958 oleh Michel Kervaire, Raoul Bott, dan John Milnor.[24] Tidak adanya aljabar pembagian berdimensi ganjil lebih klasik. Ini dapat disimpulkan dari teorema bola berbulu yang diilustrasikan di sebelah kanan.[butuh rujukan]
Catatan
^Sama halnya, medan adalah struktur aljabar⟨F, +, ·, −, −1, 0, 1⟩ dari tipe ⟨2, 2, 1, 1, 0, 0⟩, sehingga 0−1 tidak ditentukan, ⟨F, +, -, 0⟩ dan
⟨F ∖ {0}, ·, −1⟩ adalah gro abelian, dan
· bersifat distributif di atas +. (Wallace 1998, Th. 2)
^Secara historis, gelanggang pembagian kadang-kadang disebut sebagai medan, sedangkan medan disebut medan komutatif.
Kiernan, B. Melvin (1971), "The development of Galois theory from Lagrange to Artin", Archive for History of Exact Sciences, 8 (1–2): 40–154, doi:10.1007/BF00327219, MR1554154Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
Kuhlmann, Salma (2000), Ordered exponential fields, Fields Institute Monographs, 12, American Mathematical Society, ISBN0-8218-0943-1, MR1760173
Tits, Jacques (1957), "Sur les analogues algébriques des groupes semi-simples complexes", Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain, Paris: Librairie Gauthier-Villars, hlm. 261–289
Untuk sistem operasi Apple, lihat iOS. Pelabuhan Ios Ios merupakan sebuah pulau di Yunani. Pulau ini terletak di bagian selatan. Tepatnya di region Aegea Selatan. Pulau ini memiliki luas wilayah 109 km². Dengan memiliki jumlah penduduk sebesar 1.838 jiwa (2001). Pulau ini memiliki kepadatan penduduk sebesar 17 jiwa/km². Pranala luar Ios Island travel guide Diarsipkan 2011-06-23 di Wayback Machine. (Yunani) (Inggris) (Italia) Live webcam from the Port of Ios Diarsipkan 2020-09-26 di Waybac…
Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Emmy Labib – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Emmy LabibLahir23 April 1980 (umur 43)Banjarmasi…
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Dalam artikel ini, nama keluarganya adalah de Bruyn. Erik de BruynLahir27 Oktober 1962 (umur 61)Terneuzen, Zeeland, BelandaPekerjaanSutradara, pemeranTahun aktif1990-kini Erik de Bruyn (lahir 27 Oktober 1962) adalah seorang sutradara dan pemera…
العلاقات الأندورية الموريشيوسية أندورا موريشيوس أندورا موريشيوس تعديل مصدري - تعديل العلاقات الأندورية الموريشيوسية هي العلاقات الثنائية التي تجمع بين أندورا وموريشيوس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و…
جزء من سلسلة عليالحرب التاريخ ما قبل التاريخ الحروب القديمة ما بعد الكلاسيكية أوائل العصر الحديث أواخر العصر الحديث الصناعية الجيل الرابع ساحة المعركة الجوية الإلكترونية المعلومات البرية المناطق الباردة الصحراء الغابة الجبال حضرية البحرية الفضاء الأسلحة المدرعات المدفع…
Mitologi YunaniDewa-Dewi Yunani Titan dan Dewa-Dewi Olimpus Dewa Laut Dewa Dunia Bawah Dewa Lainnya Dewa-Dewi Olimpus Zeus Hera Afrodit Apollo Athena Ares Artemis Demeter Dionisos Hades Hefaistos Hermes Hestia Poseidon Daftar tokoh mitologi Yunani lbs Dewa dunia bawah Yunani adalah dewa-dewa dalam mitologi Yunani yang tinggal atau bertugas di dunia bawah. Pemimpinnya adalah Hades yang didampingi oleh istrinya, Persefone. Hades adalah pemimpin di dunia bawah. Persefone, istri Hades. Hekate adalah…
Diagram ini menunjukkan orbit satelit iregular Saturnus. Di tengah, orbit Titan, sebuah satelit yang regular, ditandai dengan warna merah sebagai perbandingan. Tarvos (satelit) adalah satelit alami dari planet Saturnus. Saturnus memiliki 62 satelit, dengan 53 di antaranya telah dinamai dan hanya 13 di antaranya memiliki diameter lebih besar dari 50 kilometer. Referensi http://solarsystem.nasa.gov/planets/profile.cfm?Display=Sats&Object=Saturn Diarsipkan 2014-04-16 di Wayback Machine.
Dutch snack Rectangular kaassoufflés on a plate. A kaassoufflé is a Dutch snack of melted cheese inside a thin dough-based wrap which has been breaded and then deep-fried. Overview A kaassoufflé is thought to be influenced by Indonesian street food called gorengan (fritter).[1] It is either bought ready-made frozen and deep-fried at home, or ordered at snackbars in the Netherlands, where it is one of the few vegetarian fast-food snacks available.[2] At certain Dutch fastfood o…
Halaman ini berisi artikel tentang pasal 10 Kitab Bilangan dalam Alkitab Kristen atau Ibrani. Untuk bilangan dalam arti angka 10, lihat 10 (angka). Bilangan 10Huruf Ibrani Nun ditulis terbalik pada Bilangan 10:35-36 dalam Kodeks Leningrad (1008 M.)KitabKitab BilanganKategoriTauratBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen4← pasal 9 pasal 11 → Bilangan 10 (disingkat Bil 10) adalah pasal kesepuluh Kitab Bilangan dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kr…
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: PowerBook 180 – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) Laptop by Apple Computer Macintosh PowerBook 180 and 180cPowerBook 180cDeveloperApple ComputerTypeLaptopRelease dateOctober 19, …
رينيه كليمنت (بالفرنسية: René Clément) معلومات شخصية الميلاد 18 مارس 1913 [1][2][3][4][5] بوردو[6] الوفاة 17 مارس 1996 (82 سنة) [1][2][7][3][4][5] مونت كارلو مكان الدفن منتون مواطنة فرنسا الحياة العملية المدرسة الأم المدرسة الو…
Piala Dunia FIFA 2014Copa do Mundo da FIFABrasil 2014[1]Logo resmi Piala Dunia FIFA 2014Juntos num só ritmo(Semua dalam satu irama)Informasi turnamenTuan rumahBrasilJadwalpenyelenggaraan12 Juni – 13 JuliJumlahtim peserta32 (dari 5 konfederasi)Tempatpenyelenggaraan12 (di 12 kota)Hasil turnamenJuara Jerman (gelar ke-4)Tempat kedua ArgentinaTempat ketiga BelandaTempat keempat BrasilStatistik turnamenJumlahpertandingan64Jumlah gol171 (2,67 per pertanding…
Coppa Italia Serie C 2003-2004 Competizione Coppa Italia Serie C Sport Calcio Edizione 32ª Organizzatore Lega Professionisti Serie C Date dal 17 agosto 2003al 29 aprile 2004 Luogo Italia Partecipanti 80 Formula 16 gironi Risultati Vincitore Cesena(1º titolo) Secondo Pro Patria Cronologia della competizione 2002-2003 2004-2005 Manuale La Coppa Italia di Serie C 2003-2004 è stata la 23ª edizione del torneo calcistico noto successivamente come Coppa Italia Lega Pro. Ve…
Observation tower in Brighton, East Sussex Brighton tower redirects here. Not to be confused with New Brighton Tower. Brighton i360View of the i360 from King's Road in 2018Location in East SussexShow map of East SussexLocation in EnglandShow map of EnglandGeneral informationStatusCompletedTypeObservation towerLocationBrighton & HoveCountryEnglandCoordinates50°49′17″N 0°09′03″W / 50.8214°N 0.1507°W / 50.8214; -0.1507Groundbreaking29 July 2014[1]Esti…
西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(英…
Romance language This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Haketia – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) HaketiaHakitia, Haquitía, Western Judeo-SpanishAn original letter in Solitreo script from Tangier, written in 1832.Native toNorth …
1985 science fantasy film by Joe Dante ExplorersTheatrical release posterDirected byJoe DanteWritten byEric LukeProduced byDavid BombykEdward S. FeldmanStarring Ethan Hawke River Phoenix Jason Presson CinematographyJohn HoraEdited byTina HirschMusic byJerry GoldsmithDistributed byParamount PicturesRelease date July 12, 1985 (1985-07-12) Running time109 minutes[1]CountryUnited StatesLanguageEnglishBudget$20–25 million[2][3]Box office$9.9 million[4]…