Share to: share facebook share twitter share wa share telegram print page

العلاقات الشمال مقدونية اللبنانية

العلاقات الشمال مقدونية اللبنانية
مقدونيا الشمالية لبنان
شمال مقدونيا
لبنان

العلاقات الشمال مقدونية اللبنانية هي العلاقات الثنائية التي تجمع بين شمال مقدونيا ولبنان.[1][2][3][4][5]

مقارنة بين البلدين

هذه مقارنة عامة ومرجعية للدولتين:

وجه المقارنة مقدونيا الشمالية شمال مقدونيا لبنان لبنان
المساحة (كم2) 25.71 ألف 10.45 ألف
عدد السكان (نسمة) 2.08 مليون[6] 6.10 مليون
الكثافة السكانية (ن./كم²) 80.9 583.73
العاصمة إسكوبية بيروت
اللغة الرسمية اللغة المقدونية، اللغة الألبانية اللغة العربية، لغة فرنسية
العملة دينار مقدوني ليرة لبنانية
الناتج المحلي الإجمالي (بليون دولار) 11.34 مليار[7] 51.84 مليار[8]
الناتج المحلي الإجمالي (تعادل القوة الشرائية) بليون دولار 29.26 مليار[9] 81.54 مليار[9]
الناتج المحلي الإجمالي الاسمي للفرد دولار أمريكي 4.85 ألف[10] 8.05 ألف[10]
الناتج المحلي الإجمالي للفرد دولار أمريكي 16.25 ألف[11] 17.46 ألف[12]
مؤشر التنمية البشرية 0.747[13] 0.769[14]
رمز المكالمات الدولي +389 +961
رمز الإنترنت .mk .lb
المنطقة الزمنية توقيت وسط أوروبا، ت ع م+01:00، ت ع م+02:00، Europe/Skopje ‏ ت ع م+02:00، ت ع م+03:00، توقيت شرق أوروبا، توقيت شرق أوروبا الصيفي [الإنجليزية]

منظمات دولية مشتركة

يشترك البلدان في عضوية مجموعة من المنظمات الدولية، منها:

علم المنظمة اسم المنظمة تاريخ انضمام شمال مقدونيا تاريخ انضمام لبنان
مؤسسة التنمية الدولية 25 فبراير 1993 10 أبريل 1962
يونسكو 28 يونيو 1993[15] 4 نوفمبر 1946[15]
وكالة ضمان الاستثمار متعدد الأطراف 19 مارس 1993 19 أكتوبر 1994
الأمم المتحدة 8 أبريل 1993 24 أكتوبر 1945
الاتحاد البريدي العالمي ?[16] ?[16]
البنك الدولي للإنشاء والتعمير 25 فبراير 1993 14 أبريل 1947
الاتحاد الدولي للاتصالات 4 مايو 1993[17] 12 يناير 1924[17]
منظمة حظر الأسلحة الكيميائية ?[18] ?[18]
مؤسسة التمويل الدولية 25 فبراير 1993 28 ديسمبر 1956
المركز الدولي لتسوية المنازعات الاستشارية 26 نوفمبر 1998 25 أبريل 2003
منظمة الشرطة الجنائية الدولية ?[19] ?[19]

مراجع

  1. ^ الجاسور، ناظم عبد الواحد (1 يناير 2001). أسس وقواعد العلاقات الدبلوماسية والقنصلية: دليل عمل الدبلوماسي والبعثات الدبلوماسية. Al Manhal. ISBN:9796500022918. مؤرشف من الأصل في 2019-12-16.
  2. ^ "اتفاقية فيينا للعلاقات الدبلوماسية عام 1961". www.aljazeera.net. مؤرشف من الأصل في 2018-10-04. اطلع عليه بتاريخ 2019-03-10.
  3. ^ "محاضرات في قانون العلاقات الدولية -العلاقات الدبلوماسية- السداسي الاول للسنة الجامعية 2017-2018". مؤرشف من الأصل في 2018-10-23.
  4. ^ "مفهوم العلاقات الدولية: إشكاليات التعريف". المعهد المصري للدراسات. 15 فبراير 2016. مؤرشف من الأصل في 2018-02-02. اطلع عليه بتاريخ 2019-03-10.
  5. ^ "الموسوعة العربية | العلاقات الدولية (نظرية-)". arab-ency.com. مؤرشف من الأصل في 2019-12-23. اطلع عليه بتاريخ 2019-03-10. نسخة محفوظة 23 ديسمبر 2019 على موقع واي باك مشين.
  6. ^ Eurostat - Tables, Graphs and Maps Interface (TGM) table نسخة محفوظة 2 يونيو 2019 على موقع واي باك مشين.
  7. ^ إجمالي الناتج المحلي (القيمة الحالية بالدولار الأمريكي) نسخة محفوظة 14 مارس 2019 على موقع واي باك مشين.
  8. ^ إجمالي الناتج المحلي (القيمة الحالية بالدولار الأمريكي) نسخة محفوظة 14 مارس 2019 على موقع واي باك مشين.
  9. ^ ا ب إجمالي الدخل القومي، وفقا لتعادل القوة الشرائية (بالأسعار الجارية للدولار الدولي) نسخة محفوظة 2 مايو 2019 على موقع واي باك مشين.
  10. ^ ا ب نصيب الفرد من إجمالي الناتج المحلي (بالأسعار الجارية للدولار الأمريكي) نسخة محفوظة 1 يوليو 2019 على موقع واي باك مشين.
  11. ^ Report for Selected Countries and Subjects نسخة محفوظة 16 ديسمبر 2019 على موقع واي باك مشين.
  12. ^ نصيب الفرد من إجمالي الناتج المحلي، وفقا لتعادل القوة الشرائية (بالأسعار الجارية للدولار الدولي) نسخة محفوظة 22 يونيو 2019 على موقع واي باك مشين.
  13. ^ Human Development Reports نسخة محفوظة 8 مايو 2019 على موقع واي باك مشين.
  14. ^ Human Development Reports نسخة محفوظة 30 أغسطس 2018 على موقع واي باك مشين.
  15. ^ ا ب List of UNESCO Member States | United Nations Educational, Scientific and Cultural Organization نسخة محفوظة 14 يونيو 2019 على موقع واي باك مشين.
  16. ^ ا ب Universal Postal Union – Member countries نسخة محفوظة 21 مارس 2019 على موقع واي باك مشين.
  17. ^ ا ب List of Member States نسخة محفوظة 4 مايو 2019 على موقع واي باك مشين.
  18. ^ ا ب Member States | OPCW نسخة محفوظة 29 سبتمبر 2018 على موقع واي باك مشين.
  19. ^ ا ب INTERPOL member countries نسخة محفوظة 22 فبراير 2019 على موقع واي باك مشين.

Read other articles:

Antonio de La Gándara Antonio de La Gándara, lahir dengan nama Antoine Henri Pierre de La Gándara pada 16 Desember 1861 di arondisemen ke-IX Paris[1] dan meninggal pada 30 Juni 1917 di arondisemen ke-6 Paris, merupakan seorang pelukis, gravir, litografi, perancang dan pastel Prancis. Ayahanda Gandara berasal dari Spanyol, San Luis Potosí di Meksiko dan ibundanya adalah orang Prancis yang belajar di Inggris, dipengaruhi oleh ketiga budaya tersebut. Pada Maret 1878, ia diterima di Beau…

Be AwareSampul digitalAlbum mini karya The BoyzDirilis16 Agustus 2022 (2022-08-16)Direkam2022Durasi19:20BahasaBahasa KoreaLabel IST Kakao Kronologi The Boyz She's the Boss(2022) Be Aware(2022) All About You(2022) Singel dalam album Be Aware TimelessDirilis: 8 Agustus 2022 WhisperDirilis: 16 Agustus 2022 Be Aware adalah album mini ketujuh dari boy grup Korea Selatan The Boyz.[1] Album ini dirilis pada 16 Agustus 2022 melalui IST Entertainment.[1] Album mini ini terdiri da…

Kolkata (কলকাতা) Pemandangan Kolkata (কলকাতা), India.Searah jarum jam: Victoria Memorial, Katedral St. Paul, Pusat Kota Kolkata, Jembatan Howrah, trem Kolkata, Jembatan Vidyasagar Setu Negara Bagian - Distrik Benggala barat - Kalkuta † Luas - Ketinggian 1480 km² - 9 m Zona waktu IST (UTC+5:30) Populasi (2010) - Kepadatan - Wilayah metropolitan (2010) 5,138,208 (ke-4) - 27462/…

2024 lunar landing mission This article is about the 2024 lunar landing mission IM-1, featuring the spacecraft Odysseus. For the putative interstellar object reported in June 2019 also known as IM1, see CNEOS 2014-01-08. For other uses, see IM 1 (disambiguation). Odysseus (spacecraft) redirects here. For the 1990-2009 solar orbiting mission originally named Odysseus, see Ulysses (spacecraft). It has been suggested that EagleCam be merged into this article. (Discuss) Proposed since February 2024.…

Jacques de Molay Mahaguru Kesatria Kenisah ke-23Masa jabatan1292–1312Penguasa monarki Philippe IV PendahuluThibaud GaudinPenggantiTarekat Dibubarkan Informasi pribadiLahirkira-kira 1240–1250[1]Molay, Haute-Saône, Kadipaten BourgogneMeninggal11 atau 18 Maret 1314 (usia kira-kira 70)[2]Paris, PrancisKarier militerPihakKesatria KenisahMasa dinas1265–1314Pangkat MahaguruSunting kotak info • L • B Jacques de Molay adalah mahaguru (Grand Master) Kesatria Kenis…

American politician (born 1960) Vicky HartzlerMember of the U.S. House of Representativesfrom Missouri's 4th districtIn officeJanuary 3, 2011 – January 3, 2023Preceded byIke SkeltonSucceeded byMark AlfordMember of the Missouri House of Representativesfrom the 124th districtIn officeJanuary 4, 1995 – January 3, 2001Preceded byGene OlsonSucceeded byRex Rector Personal detailsBornVicky Jo Zellmer (1960-10-13) October 13, 1960 (age 63)Archie, Missou…

Katedral PueblaKatedral Perawan Maria Tak BernodaSpanyol: Basílica Catedral Metropolitana de Nuestra Señora de la Purísima ConcepciónKatedral PueblaLokasiPueblaNegaraMeksikoDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Agung Puebla de los Ángeles Katedral Puebla atau yang bernama resmi Katedral Perawan Maria Tak Bernoda (Spanyol: Basílica Catedral Metropolitana de Nuestra Señora de la Purísima Concepción) adalah sebuah …

ElasmobranchiiRentang fosil: Devon–Sekarang PreЄ Є O S D C P T J K Pg N Carcharodon carcharias Mobula mobular Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Chondrichthyes Subkelas: ElasmobranchiiBonaparte, 1838 Superordo Ctenacanthiformes (punah) Phoebodontiformes (punah) Xenacanthiformes (punah) Klad Euselachii Hybodontiformes (punah) Klad Neoselachii Batoidea Selachimorpha Synechodontiformes (punah) Elasmobranch tidak mempunyai gelembung renang, dan menjaga…

Irish architect and furniture designer For the racing cyclist, see Eileen Gray (cyclist). This article cites its sources but does not provide page references. You can help providing page numbers for existing citations. (August 2020) (Learn how and when to remove this template message) Eileen GrayEileen GrayBornKathleen Eileen Moray Smith9 August 1878Enniscorthy, County Wexford, IrelandDied31 October 1976 (aged 98)Paris, FranceAlma materSlade School of Fine ArtAcadémie Julian Académie Cola…

Candi Kimpulan/PustakasalaCandi Kimpulan ketika digali. Pada bagian latar belakang adalah Masjid Ulil Albab Universitas Islam Indonesia.Location within JawaInformasi umumGaya arsitekturCandiKotaKabupaten Sleman, Yogyakarta.NegaraIndonesiaRampungabad ke-9/10 Candi Kimpulan (juga dikenal sebagai candi Pustakasala) (Jawa: ꦥꦸꦱ꧀ꦠꦏꦱꦭ, translit. Pustakasala) adalah sebuah peninggalan purbakala di lokasi kampus Universitas Islam Indonesia (UII) di Dusun Kimpulan, Desa Umbulmarta…

Menara BuranaInformasi umumStatusHancur sebagianJenisBangunan sejarahLokasiKirgistanRampungabad ke-9 Menara Burana adalah minaret besar di Lembah Chuy yang berada di utara Kirgistan. Lokasi Menara Burana terletak sekitar 80 km di sebelah timur ibu kota negara Bishkek, dekat kota Tokmok. Menara, bersama dengan penanda kuburan, beberapa gundukan tanah dan reruntuhan benteng serta tiga monumen makam, merupakan bagian sisa-sisa kota kuno Balasagun, yang didirikan oleh Kekhanan Kara-Khanid pada …

German resistance fighter (1910–1943) Mimi TerwielBornMaria Terwiel7 June 1910Boppard, Rhineland-Palatinate, German EmpireDied5 August 1943(1943-08-05) (aged 33)Plötzensee Prison, Berlin, Nazi GermanyCause of deathExecution by guillotineOccupation(s)Trainee lawyer, then typistMovementMember of the Red Orchestra (Rote Kapelle) Maria Mimi Terwiel (7 June 1910 – 5 August 1943) was a German resistance fighter against the Nazi regime. She was active in a group in Berlin that wrote and …

Hill or ridge with a gentle slope on one side and a steep slope on the other For people with the surname Cuesta, see Cuesta (surname). Cuesta in Italy Schematic cross section of three cuestas, dip slopes facing left, and harder rock layers in darker colors than softer ones Cuesta in Crimea Magaliesberg Range, Transvaal, South Africa A cuesta (from Spanish cuesta slope) is a hill or ridge with a gentle slope on one side, and a steep slope on the other. In geology the term is more specifically app…

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГрузия…

Pour les articles homonymes, voir guerrier (homonymie). Cet article est une ébauche concernant le domaine militaire. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Détails de la Tapisserie de Bayeux. Un guerrier est une personne spécialisée dans le combat ou la guerre, en particulier dans le contexte d'une société de culture guerrière tribale ou basée sur le clan qui reconnaît une classe ou une caste de gu…

معركة السبلة جزء من تمرد الإخوان (1929-1930) موقع مدينة الزلفي أعلى الخريطة حيث وقعت المعركة. معلومات عامة التاريخ الهجري: السبت 18 شوال 1347 هـ التاريخ الميلادي:السبت 30 مارس 1929م البلد السعودية  الموقع روضة السبلة في الزلفي.[1] النتيجة انتصار الملك عبد العزيز بن عبد الرحمن آل س…

South Korean graphic novel For the 2007 book, see The Queen's Knight (book). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Queen's Knight – news · newspapers · books · scholar&…

Generalization of gamma distribution to multiple dimensions WishartNotation X ~ Wp(V, n)Parameters n > p − 1 degrees of freedom (real)V > 0 scale matrix (p × p pos. def)Support X(p × p) positive definite matrixPDF f X ( X ) = | X | ( n − p − 1 ) / 2 e − tr ⁡ ( V − 1 X ) / 2 2 n p 2 | V | n / 2 Γ p ( n 2 ) {\displaystyle f_{\mathbf {X} }(\mathbf {X} )={\frac {|\mathbf {X} |^{(n-p-1)/2}e^{-\operatorname {tr} (\mathbf {V} ^{-1}\mathbf {X} )/2}}{2^…

Artikel ini sudah memiliki referensi, tetapi tidak disertai kutipan yang cukup. Anda dapat membantu mengembangkan artikel ini dengan menambahkan lebih banyak kutipan pada teks artikel. (November 2023) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)Artikel atau bagian artikel ini diterjemahkan secara buruk. Kualitas terjemahannya masih kurang bagus. Bagian-bagian yang mungkin diterjemahkan dari bahasa lain masih perlu diperhalus dan disempurnakan. Anda dapat mempertimbangkan u…

Video game character This article is about the Nintendo character. For the namesake franchise featuring him, see Mario (franchise) and Super Mario. For other uses, see Mario (given name) and Mario (disambiguation). Fictional character MarioMario characterMario, as depicted in New Super Mario Bros. U DeluxeFirst gameDonkey Kong (1981)Created byShigeru MiyamotoDesigned byShigeru MiyamotoYōichi KotabeShigefumi HinoVoiced byCharles Martinet (1991–2023)Kevin Afghani (2023–present) Others: Larry …

Kembali kehalaman sebelumnya