قاسم مشترك أكبرفي الرياضيات، القاسم المشترك الأكبر (بالإنجليزية: Greatest common divisor) لعددين كما يدل على ذلك اسمه هو أكبر عدد يقسم في نفس الوقت العددين معاً بدون أي باقي قسمة، فمثلاً القاسم المشترك الأكبر للعددين 48 و 60 هو 12.[1] يمدد هذا المفهوم إلى متعددات الحدود (من أجل ذلك انظر القاسم المشترك الأكبر لمتعددتي حدود) وإلى حلقات تبادلية أخرى. نظرة شاملةالقاسم المشترك الأكبر (GCD) لعددين صحيحين غير صفريين a وb هو أكبر عدد صحيح موجب d بحيث يكون d قاسمًا لكل من a وb; أي أن هناك أعدادًا صحيحة e وf بحيث تكون a = de وb = df، وd هو أكبر عدد صحيح من هذا القبيل. يعرف GCD لـ a وb عمومًا بـ . اختزال الكسوريستعمل القاسم المشترك الأكبر في اختزال الكسور. على سبيل المثال، القاسم المشترك الأكبر ل 42 و 56 هو 14، إذن : عددان هما أوليان فيما بينهما إذا كان قاسمهما المشترك الأكبر مساويا ل1. على سبيل المثال، 9 و 28 هما عددان أوليان فيما بينهما. نظرة هندسيةطريقة الحساباستعمال التعميل إلى جداء أعداد أوليةيمكن حساب القاسم المشترك الأكبر لعددين كما في المثال التالي: نأخذ كمثال العددين 6 و3 ونبحث عن قاسمهما المشترك الأكبر.
استعمال خوارزمية اقليدسنقسم العدد الأكبر على الأصغر ثم نأخذ باقي القسمة مع العدد الأصغر الناتج ونعيد العملية مع هذين العددين الجديدين حتى نحصل على باقي هو الصفر فيكون العدد الأصغر هو القاسم المشترك الأكبر خصائص
انظر أيضًامراجع
|