تنقيب البيانات التعليمية (بالإنجليزية: Education Data Mining, EDM) هو أحد التخصصات الناشئة ويُعنى بتطوير أساليب لاستكشاف الأنواع الفريدة من البيانات التي تؤخذ من البيئات التعليمية واستخدام هذه الأساليب في تحقيق فهم أفضل للطلاب والبيئات التي يتعلمون فيها.[1] ويعتبر استخراج سجلات أداء الطلاب المخزنة على الكمبيوتر من المجالات الأساسية في هذا التخصص،[2] كما أن استخراج بيانات التسجيل يعد مجالاً رئيسيًا آخر.[3] تتضمن الاستخدامات الأساسية لاستخراج البيانات التعليمية التنبؤ بأداء الطلاب ودراسة عملية التعلم بهدف التوصية بإدخال تحسينات على الممارسة التعليمية القائمة. هذا ويمكن اعتبار استخراج البيانات التعليمية واحدًا من علوم التعلم ومجالاً من مجالات استخراج البيانات، هذا ويعد تحليلات عملية التعلم من المجالات ذات الصلة به.
أساليب تنقيب البيانات التعليمية
هناك ارتباط بين أنواع أساليب تنقيب البيانات التعليمية وأساليب استخراج البيانات عمومًا ولكن مع بعض الفروقات التي ترجع إلى الخصائص الفريدة للبيانات التعليمية.
يصنف ريان بيكر [4] مجالات استخراج البيانات التعليمية كما يلي:
يقول بيكر وكالينا ياسيف أن لاستكشاف النماذج أهمية خاصة في استخراج البيانات التعليمية مقارنة باستخراج البيانات بشكل عام، فمن خلال استكشاف النماذج، يتم تطوير نموذج لظاهرة ما من خلال أية عملية يمكن إثباتها بطريقة ما (تكون في أغلب الأحيان بالتنبؤ أو هندسة المعرفة) ثم يستخدم هذا النموذج كعنصر في تحليل آخر مثل التنبؤ أو استخراج العلاقات.
تطبيقات تصنيف تنقيب البيانات التعليمية
للتصنيف تطبيقات كثيرة في التكنولوجيا التعليمية الحديثة، وفيما يلي قائمة بأهم المبادئ وأساليب التصنيف المستخدمة في تنقيب البيانات التعليمية والتي حررها كل من كريستوبال روميرو وسيباستيان فينتورا وميكولا بتشينسكي وريان بيكر.[5]
كما يتم نشر كثير من أبحاث استخراج البيانات التعليمية بشكل معتاد في المؤتمرات ذات الصلة مثل الذكاء الاصطناعي والتعليم وأنظمة التعليم الذكية ووضع نماذج للمستخدمين والتخصيص التكيفي.
استخدام تنقيب البيانات التعليمية في كأس كي دي دي
في 2010، تم عقد مسابقة كأس KDD التابعة لرابطة أجهزة الحوسبة (Association of Computing Machinery) التي تعني بمجال تنقيب البيانات التعليمية. وقد تم توفير مجموعة البيانات من قِبل متجر البيانات بمركز تعلم العلوم في بيتسبرغ وتضم ما يزيد عن مليون نقطة بيانات مأخوذة من طلاب يستخدمون البرنامج التعليمي المعلم الإدراكي (Cognitive Tutor). هذا وقد تنافس 600 فريق للفور بجائزة مالية قدرها 8000 دولار أمريكي تبرع بقيمتها موقع فيس بوك. وقد استخدم الفائزون أساليب الغابة العشوائية والشبكات البايزية وتقنيات إنشاء الميزات للتنبؤ الدقيق بأداء ما يربو عن نصف مليون إجابة لطلاب غير مرئيين.
^R. Baker, K. Yacef (2010). "The State of Educational Data Mining in 2009: A Review and Future Visions". Journal of Educational Data Mining, Volume 1, Issue 1. ج. 1: 3–17.
^C. Romero, S. Ventura, E. Garcia (2008). "Data Mining in Course Management Systems: MOODLE Case Study and Tutorial". Computers & Education. 51(1): 368–384.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
^R. Baker (2010) Data Mining for Education. In McGaw, B., Peterson, P., Baker, E. (Eds.) International Encyclopedia of Education (3rd edition), vol. 7, pp. 112-118. Oxford, UK: Elsevier.
^C. Romero, S. Ventura. Educational Data Mining: A Review of the State-of-the-Art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 40(6), 601-618, 2010.