Share to: share facebook share twitter share wa share telegram print page

Apollonian gasket

An example of an Apollonian gasket

In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga.[1]

Construction

Mutually tangent circles. Given three mutually tangent circles (black), there are in general two other circles mutually tangent to them (red).

The construction of the Apollonian gasket starts with three circles , , and (black in the figure), that are each tangent to the other two, but that do not have a single point of triple tangency. These circles may be of different sizes to each other, and it is allowed for two to be inside the third, or for all three to be outside each other. As Apollonius discovered, there exist two more circles and (red) that are tangent to all three of the original circles – these are called Apollonian circles. These five circles are separated from each other by six curved triangular regions, each bounded by the arcs from three pairwise-tangent circles. The construction continues by adding six more circles, one in each of these six curved triangles, tangent to its three sides. These in turn create 18 more curved triangles, and the construction continues by again filling these with tangent circles, ad infinitum.

Continued stage by stage in this way, the construction adds new circles at stage , giving a total of circles after stages. In the limit, this set of circles is an Apollonian gasket. In it, each pair of tangent circles has an infinite Pappus chain of circles tangent to both circles in the pair.

In the limiting case (0,0,1,1), the two largest circles are replaced by parallel straight lines. This produces a family of Ford circles.

The size of each new circle is determined by Descartes' theorem, which states that, for any four mutually tangent circles, the radii of the circles obeys the equation This equation may have a solution with a negative radius; this means that one of the circles (the one with negative radius) surrounds the other three. One or two of the initial circles of this construction, or the circles resulting from this construction, can degenerate to a straight line, which can be thought of as a circle with infinite radius. When there are two lines, they must be parallel, and are considered to be tangent at a point at infinity. When the gasket includes two lines on the -axis and one unit above it, and a circle of unit diameter tangent to both lines centered on the -axis, then the circles that are tangent to the -axis are the Ford circles, important in number theory.

The Apollonian gasket has a Hausdorff dimension of about 1.3057.[2][3] Because it has a well-defined fractional dimension, even though it is not precisely self-similar, it can be thought of as a fractal.

Symmetries

The Möbius transformations of the plane preserve the shapes and tangencies of circles, and therefore preserve the structure of an Apollonian gasket. Any two triples of mutually tangent circles in an Apollonian gasket may be mapped into each other by a Möbius transformation, and any two Apollonian gaskets may be mapped into each other by a Möbius transformation. In particular, for any two tangent circles in any Apollonian gasket, an inversion in a circle centered at the point of tangency (a special case of a Möbius transformation) will transform these two circles into two parallel lines, and transform the rest of the gasket into the special form of a gasket between two parallel lines. Compositions of these inversions can be used to transform any two points of tangency into each other. Möbius transformations are also isometries of the hyperbolic plane, so in hyperbolic geometry all Apollonian gaskets are congruent. In a sense, there is therefore only one Apollonian gasket, up to (hyperbolic) isometry.

The Apollonian gasket is the limit set of a group of Möbius transformations known as a Kleinian group.[4]

For Euclidean symmetry transformations rather than Möbius transformations, in general, the Apollonian gasket will inherit the symmetries of its generating set of three circles. However, some triples of circles can generate Apollonian gaskets with higher symmetry than the initial triple; this happens when the same gasket has a different and more-symmetric set of generating circles. Particularly symmetric cases include the Apollonian gasket between two parallel lines (with infinite dihedral symmetry), the Apollonian gasket generated by three congruent circles in an equilateral triangle (with the symmetry of the triangle), and the Apollonian gasket generated by two circles of radius 1 surrounded by a circle of radius 2 (with two lines of reflective symmetry).

Integral Apollonian circle packings

If any four mutually tangent circles in an Apollonian gasket all have integer curvature (the inverse of their radius) then all circles in the gasket will have integer curvature.[5] Since the equation relating curvatures in an Apollonian gasket, integral or not, is it follows that one may move from one quadruple of curvatures to another by Vieta jumping, just as when finding a new Markov number. The first few of these integral Apollonian gaskets are listed in the following table. The table lists the curvatures of the largest circles in the gasket. Only the first three curvatures (of the five displayed in the table) are needed to completely describe each gasket – all other curvatures can be derived from these three.

Enumerating integral Apollonian circle packings

The curvatures are a root quadruple (the smallest in some integral circle packing) if . They are primitive when . Defining a new set of variables by the matrix equation gives a system where satisfies the Descartes equation precisely when . Furthermore, is primitive precisely when , and is a root quadruple precisely when .[5]

This relationship can be used to find all the primitive root quadruples with a given negative bend . It follows from and that , and hence that . Therefore, any root quadruple will satisfy . By iterating over all the possible values of , , and one can find all the primitive root quadruples.[6] The following Python code demonstrates this algorithm, producing the primitive root quadruples listed above.

import math

def get_primitive_bends(n: int):
    if n == 0:
        yield 0, 0, 1, 1
        return
    for m in range(math.ceil(n / math.sqrt(3))):
        s = m**2 + n**2
        for d1 in range(max(2 * m, 1), math.floor(math.sqrt(s)) + 1):
            d2, remainder = divmod(s, d1)
            if remainder == 0 and math.gcd(n, d1, d2) == 1:
                yield -n, d1 + n, d2 + n, d1 + d2 + n - 2 * m

for n in range(15):
    for bends in get_primitive_bends(n):
        print(bends)

The curvatures appearing in a primitive integral Apollonian circle packing must belong to a set of six or eight possible residues classes modulo 24, and numerical evidence supported that any sufficiently large integer from these residue classes would also be present as a curvature within the packing.[7] This conjecture, known as the local-global conjecture, was proved to be false in 2023.[8][9]

Symmetry of integral Apollonian circle packings

There are multiple types of dihedral symmetry that can occur with a gasket depending on the curvature of the circles.

No symmetry

If none of the curvatures are repeated within the first five, the gasket contains no symmetry, which is represented by symmetry group C1; the gasket described by curvatures (−10, 18, 23, 27) is an example.

D1 symmetry

Whenever two of the largest five circles in the gasket have the same curvature, that gasket will have D1 symmetry, which corresponds to a reflection along a diameter of the bounding circle, with no rotational symmetry.

D2 symmetry

If two different curvatures are repeated within the first five, the gasket will have D2 symmetry; such a symmetry consists of two reflections (perpendicular to each other) along diameters of the bounding circle, with a two-fold rotational symmetry of 180°. The gasket described by curvatures (−1, 2, 2, 3) is the only Apollonian gasket (up to a scaling factor) to possess D2 symmetry.

D3 symmetry

There are no integer gaskets with D3 symmetry.

If the three circles with smallest positive curvature have the same curvature, the gasket will have D3 symmetry, which corresponds to three reflections along diameters of the bounding circle (spaced 120° apart), along with three-fold rotational symmetry of 120°. In this case the ratio of the curvature of the bounding circle to the three inner circles is 23 − 3. As this ratio is not rational, no integral Apollonian circle packings possess this D3 symmetry, although many packings come close.

Almost-D3 symmetry

(−15, 32, 32, 33)
(−15, 32, 32, 33)

The figure at left is an integral Apollonian gasket that appears to have D3 symmetry. The same figure is displayed at right, with labels indicating the curvatures of the interior circles, illustrating that the gasket actually possesses only the D1 symmetry common to many other integral Apollonian gaskets.

The following table lists more of these almost-D3 integral Apollonian gaskets. The sequence has some interesting properties, and the table lists a factorization of the curvatures, along with the multiplier needed to go from the previous set to the current one. The absolute values of the curvatures of the "a" disks obey the recurrence relation a(n) = 4a(n − 1) − a(n − 2) (sequence A001353 in the OEIS), from which it follows that the multiplier converges to 3 + 2 ≈ 3.732050807.

Integral Apollonian gaskets with near-D3 symmetry
Curvature Factors Multiplier
a b c d a b d a b c d
−1 2 2 3 1×1 1×2 1×3
−4 8 9 9 2×2 2×4 3×3 4.000000000 4.000000000 4.500000000 3.000000000
−15 32 32 33 3×5 4×8 3×11 3.750000000 4.000000000 3.555555556 3.666666667
−56 120 121 121 8×7 8×15 11×11 3.733333333 3.750000000 3.781250000 3.666666667
−209 450 450 451 11×19 15×30 11×41 3.732142857 3.750000000 3.719008264 3.727272727
−780 1680 1681 1681 30×26 30×56 41×41 3.732057416 3.733333333 3.735555556 3.727272727
−2911 6272 6272 6273 41×71 56×112 41×153 3.732051282 3.733333333 3.731112433 3.731707317
−10864 23408 23409 23409 112×97 112×209 153×153 3.732050842 3.732142857 3.732302296 3.731707317
−40545 87362 87362 87363 153×265 209×418 153×571 3.732050810 3.732142857 3.731983425 3.732026144

Sequential curvatures

Nested Apollonian gaskets

For any integer n > 0, there exists an Apollonian gasket defined by the following curvatures:
(−nn + 1, n(n + 1), n(n + 1) + 1).
For example, the gaskets defined by (−2, 3, 6, 7), (−3, 4, 12, 13), (−8, 9, 72, 73), and (−9, 10, 90, 91) all follow this pattern. Because every interior circle that is defined by n + 1 can become the bounding circle (defined by −n) in another gasket, these gaskets can be nested. This is demonstrated in the figure at right, which contains these sequential gaskets with n running from 2 through 20.

See also

Apollonian sphere packing

Notes

  1. ^ Satija, I. I., The Butterfly in the Iglesias Waseas World: The story of the most fascinating quantum fractal (Bristol: IOP Publishing, 2016), p. 5.
  2. ^ Boyd, David W. (1973), "The residual set dimension of the Apollonian packing", Mathematika, 20 (2): 170–174, doi:10.1112/S0025579300004745, MR 0493763
  3. ^ McMullen, Curtis T. (1998), "Hausdorff dimension and conformal dynamics, III: Computation of dimension" (PDF), American Journal of Mathematics, 120 (4): 691–721, doi:10.1353/ajm.1998.0031, MR 1637951, S2CID 15928775
  4. ^ Counting circles and Ergodic theory of Kleinian groups by Hee Oh Brown. University Dec 2009
  5. ^ a b Ronald L. Graham, Jeffrey C. Lagarias, Colin M. Mallows, Alan R. Wilks, and Catherine H. Yan; "Apollonian Circle Packings: Number Theory" J. Number Theory, 100 (2003), 1-45
  6. ^ Bradford, Alden. "Revisiting Apollonian Gaskets". Retrieved 7 August 2022.
  7. ^ Fuchs, Elena; Sanden, Katherine (2011-11-28). "Some Experiments with Integral Apollonian Circle Packings". Experimental Mathematics. 20 (4): 380–399. arXiv:1001.1406. doi:10.1080/10586458.2011.565255. ISSN 1058-6458.
  8. ^ Summer Haag; Clyde Kertzer; James Rickards; Katherine E. Stange. "The Local-Global Conjecture for Apollonian circle packings is false". arXiv:2307.02749.
  9. ^ Levy, Max G. (August 10, 2023). "Two Students Unravel a Widely Believed Math Conjecture". Quanta Magazine. Retrieved August 14, 2023.

References

External links

Baca informasi lainnya:

Provinsi Iki (壱岐国code: ja is deprecated , iki no kuni) adalah provinsi lama Jepang yang menempati seluruh wilayah yang ada di pulau Iki di lepas pantai pulau Kyushu. Provinsi ini juga dikenal sebagai Ishu (壱州code: ja is deprecated ). Sejarah Provinsi Iki pada abad pertengahan dikenal sebagai Ichiki-no-kuni (一支国code: ja is deprecated ) atau Itai-no-kuni (一大国code: ja is deprecated ). Kitab Sanguo Zhi mencatat Kerajaan Itai yang ada di pulau Iki dan konon dihuni oleh 3.000 kep…

This article is about the Morecambe Newspaper. For the Southport Newspaper, see The Southport Visiter. The VisitorTypeWeekly regional newspaperFormatTabloidOwner(s)National WorldPublisherLancaster & Morecambe Newspapers LtdEditorNicola AdamFounded1874Political alignmentIndependentLanguageEnglishHeadquartersMorecambe, LancashireCirculation816 (as of 2022)[1]Sister newspapersLancaster GuardianWebsitewww.thevisitor.co.uk The Visitor is a weekly paid-for newspaper published in Moreca…

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен · …

Cet article est une ébauche concernant les sciences humaines et sociales et la sociologie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous …

المغرب فيالألعاب الأولمبية الصيفية للشبابالرمزMARاللجنةاللجنة الأولمبية الوطنية المغربيةالموقعwww.marocolympique.org باللغة الفرنسيةالميدالياتالترتيب 59 ذهبية 2 فضية 5 برونزية 3 المجموع 10 الظهور في الألعاب الأولمبية الصيفية للشباب201020142018ظهور صيفي201020142018ظهور شتوي201220162020 شارك المغ…

العلاقات الجنوب سودانية الكيريباتية جنوب السودان كيريباتي   جنوب السودان   كيريباتي تعديل مصدري - تعديل   العلاقات الجنوب سودانية الكيريباتية هي العلاقات الثنائية التي تجمع بين جنوب السودان وكيريباتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارن…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera …

Marisa TomeiLahir4 Desember 1964 (umur 59)Brooklyn, New York, USAPekerjaanAktrisTahun aktif1983–sekarangTinggi162 cm (5 ft 4 in) Merisa Tomei (/toʊˈmeɪ/, bahasa Italia: [toˈmɛi]; lahir 4 Desember 1964) adalah seorang aktris Amerika. Dia telah menerima various accolades, termasuk sebuah Academy Award dan nominasi untuk sebuah BAFTA Award, dua Golden Globe Awards, dan tiga Screen Actors Guild Awards. Mengikuti karyanya di serial televisi As the World Turns, Tom…

American politician Lorena GonzalezMember of the California State Assemblyfrom the 80th districtIn officeMay 28, 2013 – January 5, 2022Preceded byBen HuesoSucceeded byDavid Alvarez Personal detailsBornLorena Sofia Gonzalez (1971-09-16) September 16, 1971 (age 52)Oceanside, California, U.S.Political partyDemocraticSpouseNathan Fletcher (m. 2017)Children2EducationStanford University (BA)Georgetown University (MA)University of California, Los Angeles (JD) Lorena Sofia Gonzalez Fletc…

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Tionghoa 汉语/漢語 atau 中文Hànyǔ atau Zhōngwén Hànyǔ (Bahasa Tionghoa) ditulis dalam aksara tradisional (kiri) dan sederhana (kanan) Dituturkan diTiongkok Daratan, Taiwan, Jepang, Singapura, Malaysia, Amerika Serikat, Kanada, Britania Raya, Irlandia, Australia, Selandia Baru, Indonesia, Filipina, dan tempat-tempat lain …

Denny SakrieDenny Sakrie ketika bekerja sebagai penyiar radioLahirHamdhan Syukrie(1963-07-14)14 Juli 1963Ambon, Maluku, IndonesiaMeninggal3 Januari 2015(2015-01-03) (umur 51)Tangerang Selatan, Banten, IndonesiaPekerjaanPengamat musikPemusik Hamdhan Syukrie (14 Juli 1963 – 3 Januari 2015), lebih dikenal dengan nama Denny Sakrie, adalah seorang penulis dan pengamat musik Indonesia. Ia mengawali kariernya sebagai penulis artikel musik sejak duduk di bangku SMP (pada 1979) di me…

Perairan Perairan adalah suatu kumpulan masa air pada suatu wilayah tertentu, baik yang bersifat dinamis (bergerak atau mengalir) seperti laut dan sungai maupun statis (tergenang) seperti danau. Perairan ini dapat merupakan perairan tawar, payau, maupun asin (laut). Tipe perairan Basin Bendungan Danau Kanal Kolam Laut Pelabuhan Samudra Selat Sungai Teluk Rawa Artikel bertopik geografi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

غرب آسيا     الإحداثيات 29°10′00″N 47°36′00″E / 29.166667°N 47.6°E / 29.166667; 47.6   رمز جيونيمز 7729897  معرض صور غرب آسيا  - ويكيميديا كومنز  تعديل مصدري - تعديل   غرب آسيا هو الجزء الجنوبي الغربي من قارة آسيا.[1][2][3] على خلاف الشرق الأوسط الذي يتضمن ال…

Sultan bin Salman Al Saud, the first Arab astronaut who flew on STS-51-G aboard the Space Shuttle Discovery in 1985 To date, there have been six astronauts from Arab nations, also called najmonauts[1][2][3][4] ('najm' meaning 'star' in Arabic)[5][6] who have flown to space (with multiple others currently in training).[7][8] Prince Sultan bin Salman Al Saud of Saudi Arabia flew in the US Space Shuttle in 1985.[9][10]&…

Soelaiman Effendi Koesoemah Atmadja Ketua Mahkamah Agung Republik Indonesia ke-1Masa jabatan19 Agustus 1945 – 11 Agustus 1952Ditunjuk olehSoekarno Pendahulupenjabat pertamaPenggantiWirjono Prodjodikoro Informasi pribadiLahir(1898-09-08)8 September 1898Purwakarta, Hindia BelandaMeninggal11 Agustus 1952(1952-08-11) (umur 53)Jakarta, IndonesiaAlma materLeidenPekerjaanhakimSunting kotak info • L • B Prof. Dr. Mr. Kusumah Atmaja (ER, EYD: Kusumah Atmaja, nama lahir: …

Questa voce sull'argomento rajon dell'Oblast' di Jaroslavl' è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Borisoglebskij rajonrajonБорисоглебский район LocalizzazioneStato Russia Circondario federaleCentrale Soggetto federale Jaroslavl' AmministrazioneCapoluogoBorisoglebskij TerritorioCoordinatedel capoluogo57°16′N 39°09′E / 57.266667°N 39.15°E57.266667; 39.15 (Borisoglebskij rajon)Coordinate: 57°1…

Craig BreenBreen di Reli Swedia 2018Kebangsaan IrlandiaLahir(1990-02-02)2 Februari 1990Waterford, IrlandiaMeninggal13 April 2023(2023-04-13) (umur 33)Lobor, KroasiaKarier Kejuaraan Reli DuniaTahun aktif2009–2012, 2014–2023TimPeugeot Sport, Citroën, Hyundai, M-Sport Ford World Rally TeamJumlah lomba81Juara dunia0Menang0Podium8Menang stage30Total poin372Lomba pertamaReli Portugal 2009Lomba terakhirReli Swedia 2023 Craig Breen (2 Februari 1990 – 13 April 2023) adal…

PlutoNama lainHangul명왕성 Alih Aksara yang DisempurnakanMyeong-wang-song SutradaraShin Su-wonProduserShin Sang-han Francis LimDitulis olehShin Su-wonPemeranLee David Sung Joon Kim Kkot-biPenata musikRyu Jae-ahSinematograferYun Ji-woonPenyuntingLee Do-hyunPerusahaanproduksiSH FilmDistributorSidus FNHTanggal rilis 5 Oktober 2012 (2012-10-05) (Busan International Film Festival) 11 Juli 2013 (2013-07-11) (South Korea) Durasi107 menitNegaraKorea SelatanBahasaKoreaPen…

Resolusi 1217Dewan Keamanan PBBPano Lefkara di bagian Yunani dari SiprusTanggal22 Desember 1998Sidang no.3.959KodeS/RES/1217 (Dokumen)TopikSituasi di SiprusRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Bahrain Brasil Kosta Rika Gabon Gambia Jepang Kenya Portugal Slovenia Swe…

Art school at Willamette University PNCA redirects here. For the Pakistani arts organization, see Pakistan National Council of the Arts. Pacific Northwest College of ArtThe 511 Federal Building was built in 1916–18 as a post office and is listed on the National Register of Historic Places. It is now PNCA's main campus, the Arlene and Harold Schnitzer Center for Art and Design.TypePrivate art schoolEstablished1909Parent institutionWillamette UniversityEndowment$14.7 million[1]PresidentD…

Kembali kehalaman sebelumnya