Share to: share facebook share twitter share wa share telegram print page

Elementary charge

Elementary charge
Common symbols
SI unitcoulomb
Dimension
Value1.602176634×10−19 C[1]

The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e.[2][a]

In the SI system of units, the value of the elementary charge is exactly defined as = 1.602176634×10−19 coulombs, or 160.2176634 zeptocoulombs (zC).[3] Since the 2019 redefinition of SI base units, the seven SI base units are defined by seven fundamental physical constants, of which the elementary charge is one.

In the centimetre–gram–second system of units (CGS), the corresponding quantity is 4.8032047...×10−10 statcoulombs.[b]

Robert A. Millikan and Harvey Fletcher's oil drop experiment first directly measured the magnitude of the elementary charge in 1909, differing from the modern accepted value by just 0.6%.[4][5] Under assumptions of the then-disputed atomic theory, the elementary charge had also been indirectly inferred to ~3% accuracy from blackbody spectra by Max Planck in 1901[6] and (through the Faraday constant) at order-of-magnitude accuracy by Johann Loschmidt's measurement of the Avogadro number in 1865.

As a unit

Elementary charge
Unit systemAtomic units
Unit ofelectric charge
Symbole
Conversions
e in ...... is equal to ...
   coulombs   1.602176634×10−19[1]
   
(natural units)
   0.30282212088
   statC   ≘ 4.80320425(10)×10−10

In some natural unit systems, such as the system of atomic units, e functions as the unit of electric charge. The use of elementary charge as a unit was promoted by George Johnstone Stoney in 1874 for the first system of natural units, called Stoney units.[7] Later, he proposed the name electron for this unit. At the time, the particle we now call the electron was not yet discovered and the difference between the particle electron and the unit of charge electron was still blurred. Later, the name electron was assigned to the particle and the unit of charge e lost its name. However, the unit of energy electronvolt (eV) is a remnant of the fact that the elementary charge was once called electron.

In other natural unit systems, the unit of charge is defined as with the result that where α is the fine-structure constant, c is the speed of light, ε0 is the electric constant, and ħ is the reduced Planck constant.

Quantization

Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1/2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

This is the reason for the terminology "elementary charge": it is meant to imply that it is an indivisible unit of charge.

Fractional elementary charge

There are two known sorts of exceptions to the indivisibility of the elementary charge: quarks and quasiparticles.

  • Quarks, first posited in the 1960s, have quantized charge, but the charge is quantized into multiples of 1/3e. However, quarks cannot be isolated; they exist only in groupings, and stable groupings of quarks (such as a proton, which consists of three quarks) all have charges that are integer multiples of e. For this reason, either 1 e or 1/3 e can be justifiably considered to be "the quantum of charge", depending on the context. This charge commensurability, "charge quantization", has partially motivated Grand unified Theories.
  • Quasiparticles are not particles as such, but rather an emergent entity in a complex material system that behaves like a particle. In 1982 Robert Laughlin explained the fractional quantum Hall effect by postulating the existence of fractionally charged quasiparticles. This theory is now widely accepted, but this is not considered to be a violation of the principle of charge quantization, since quasiparticles are not elementary particles.

Quantum of charge

All known elementary particles, including quarks, have charges that are integer multiples of 1/3 e. Therefore, the "quantum of charge" is 1/3 e. In this case, one says that the "elementary charge" is three times as large as the "quantum of charge".

On the other hand, all isolatable particles have charges that are integer multiples of e. (Quarks cannot be isolated: they exist only in collective states like protons that have total charges that are integer multiples of e.) Therefore, the "quantum of charge" is e, with the proviso that quarks are not to be included. In this case, "elementary charge" would be synonymous with the "quantum of charge".

In fact, both terminologies are used.[8] For this reason, phrases like "the quantum of charge" or "the indivisible unit of charge" can be ambiguous unless further specification is given. On the other hand, the term "elementary charge" is unambiguous: it refers to a quantity of charge equal to that of a proton.

Lack of fractional charges

Paul Dirac argued in 1931 that if magnetic monopoles exist, then electric charge must be quantized; however, it is unknown whether magnetic monopoles actually exist.[9][10] It is currently unknown why isolatable particles are restricted to integer charges; much of the string theory landscape appears to admit fractional charges.[11][12]

Experimental measurements of the elementary charge

The elementary charge is exactly defined since 20 May 2019 by the International System of Units. Prior to this change, the elementary charge was a measured quantity whose magnitude was determined experimentally. This section summarizes these historical experimental measurements.

In terms of the Avogadro constant and Faraday constant

If the Avogadro constant NA and the Faraday constant F are independently known, the value of the elementary charge can be deduced using the formula (In other words, the charge of one mole of electrons, divided by the number of electrons in a mole, equals the charge of a single electron.)

This method is not how the most accurate values are measured today. Nevertheless, it is a legitimate and still quite accurate method, and experimental methodologies are described below.

The value of the Avogadro constant NA was first approximated by Johann Josef Loschmidt who, in 1865, estimated the average diameter of the molecules in air by a method that is equivalent to calculating the number of particles in a given volume of gas.[13] Today the value of NA can be measured at very high accuracy by taking an extremely pure crystal (often silicon), measuring how far apart the atoms are spaced using X-ray diffraction or another method, and accurately measuring the density of the crystal. From this information, one can deduce the mass (m) of a single atom; and since the molar mass (M) is known, the number of atoms in a mole can be calculated: NA = M/m.

The value of F can be measured directly using Faraday's laws of electrolysis. Faraday's laws of electrolysis are quantitative relationships based on the electrochemical researches published by Michael Faraday in 1834.[14] In an electrolysis experiment, there is a one-to-one correspondence between the electrons passing through the anode-to-cathode wire and the ions that plate onto or off of the anode or cathode. Measuring the mass change of the anode or cathode, and the total charge passing through the wire (which can be measured as the time-integral of electric current), and also taking into account the molar mass of the ions, one can deduce F.[1]

The limit to the precision of the method is the measurement of F: the best experimental value has a relative uncertainty of 1.6 ppm, about thirty times higher than other modern methods of measuring or calculating the elementary charge.[15]

Oil-drop experiment

A famous method for measuring e is Millikan's oil-drop experiment. A small drop of oil in an electric field would move at a rate that balanced the forces of gravity, viscosity (of traveling through the air), and electric force. The forces due to gravity and viscosity could be calculated based on the size and velocity of the oil drop, so electric force could be deduced. Since electric force, in turn, is the product of the electric charge and the known electric field, the electric charge of the oil drop could be accurately computed. By measuring the charges of many different oil drops, it can be seen that the charges are all integer multiples of a single small charge, namely e.

The necessity of measuring the size of the oil droplets can be eliminated by using tiny plastic spheres of a uniform size. The force due to viscosity can be eliminated by adjusting the strength of the electric field so that the sphere hovers motionless.

Shot noise

Any electric current will be associated with noise from a variety of sources, one of which is shot noise. Shot noise exists because a current is not a smooth continual flow; instead, a current is made up of discrete electrons that pass by one at a time. By carefully analyzing the noise of a current, the charge of an electron can be calculated. This method, first proposed by Walter H. Schottky, can determine a value of e of which the accuracy is limited to a few percent.[16] However, it was used in the first direct observation of Laughlin quasiparticles, implicated in the fractional quantum Hall effect.[17]

From the Josephson and von Klitzing constants

Another accurate method for measuring the elementary charge is by inferring it from measurements of two effects in quantum mechanics: The Josephson effect, voltage oscillations that arise in certain superconducting structures; and the quantum Hall effect, a quantum effect of electrons at low temperatures, strong magnetic fields, and confinement into two dimensions. The Josephson constant is where h is the Planck constant. It can be measured directly using the Josephson effect.

The von Klitzing constant is It can be measured directly using the quantum Hall effect.

From these two constants, the elementary charge can be deduced:

CODATA method

The relation used by CODATA to determine elementary charge was: where h is the Planck constant, α is the fine-structure constant, μ0 is the magnetic constant, ε0 is the electric constant, and c is the speed of light. Presently this equation reflects a relation between ε0 and α, while all others are fixed values. Thus the relative standard uncertainties of both will be same.

Tests of the universality of elementary charge

Particle Expected charge Experimental constraint Notes
electron exact by definition
proton by finding no measurable sound when an alternating electric field is applied to SF6 gas in a spherical resonator[18]
positron by combining the best measured value of the antiproton charge (below) with the low limit placed on antihydrogen's net charge by the ALPHA Collaboration at CERN.[19]
antiproton Hori et al.[20] as cited in antiproton/proton charge difference listing of the Particle Data Group[21] The Particle Data Group article has a link to the current online version of the particle data.

See also

Notes

  1. ^ The symbol e has another useful mathematical meaning due to which its use as label for elementary charge is avoided in theoretical physics. For example, in quantum mechanics one wants to be able to write compactly plane waves with the use of Euler's number . In the US, Euler's number is often denoted e (italicized), while it is usually denoted e (roman type) in the UK and Continental Europe. Somewhat confusingly, in atomic physics, e sometimes denotes the electron charge, i.e. the negative of the elementary charge. The symbol qe is also used for the charge of an electron.
  2. ^ This is derived from the CODATA 2018 value, since one coulomb corresponds to exactly 2997924580 statcoulombs. The conversion factor is ten times the numerical value of speed of light in metres per second.

References

  1. ^ a b c "2022 CODATA Value: elementary charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  2. ^ International Bureau of Weights and Measures (20 May 2019), The International System of Units (SI) (PDF) (9th ed.), ISBN 978-92-822-2272-0, archived from the original on 18 October 2021
  3. ^ Newell, David B.; Tiesinga, Eite (2019). The International System of Units (SI). NIST Special Publication 330. Gaithersburg, Maryland: National Institute of Standards and Technology. doi:10.6028/nist.sp.330-2019. S2CID 242934226.
  4. ^ Millikan, R. A. (1910). "The isolation of an ion, a precision measurement of its charge, and the correction of Stokes's law". Science. 32 (822): 436–448. doi:10.1126/science.32.822.436.
  5. ^ Fletcher, Harvey (1982). "My work with Millikan on the oil-drop experiment". Physics Today. 35 (6): 43–47. doi:10.1063/1.2915126.
  6. ^ Klein, Martin J. (1 October 1961). "Max Planck and the beginnings of the quantum theory". Archive for History of Exact Sciences. 1 (5): 459–479. doi:10.1007/BF00327765. ISSN 1432-0657. S2CID 121189755.
  7. ^ G. J. Stoney (1894). "Of the "Electron," or Atom of Electricity". Philosophical Magazine. 5. 38: 418–420. doi:10.1080/14786449408620653.
  8. ^ Q is for Quantum, by John R. Gribbin, Mary Gribbin, Jonathan Gribbin, page 296, Web link
  9. ^ Preskill, J. (1984). "Magnetic Monopoles". Annual Review of Nuclear and Particle Science. 34 (1): 461–530. Bibcode:1984ARNPS..34..461P. doi:10.1146/annurev.ns.34.120184.002333.
  10. ^ "Three Surprising Facts About the Physics of Magnets". Space.com. 2018. Retrieved 17 July 2019.
  11. ^ Schellekens, A. N. (2 October 2013). "Life at the interface of particle physics and string theory". Reviews of Modern Physics. 85 (4): 1491–1540. arXiv:1306.5083. Bibcode:2013RvMP...85.1491S. doi:10.1103/RevModPhys.85.1491. S2CID 118418446.
  12. ^ Perl, Martin L.; Lee, Eric R.; Loomba, Dinesh (November 2009). "Searches for Fractionally Charged Particles". Annual Review of Nuclear and Particle Science. 59 (1): 47–65. Bibcode:2009ARNPS..59...47P. doi:10.1146/annurev-nucl-121908-122035.
  13. ^ Loschmidt, J. (1865). "Zur Grösse der Luftmoleküle". Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395–413. English translation Archived February 7, 2006, at the Wayback Machine.
  14. ^ Ehl, Rosemary Gene; Ihde, Aaron (1954). "Faraday's Electrochemical Laws and the Determination of Equivalent Weights". Journal of Chemical Education. 31 (May): 226–232. Bibcode:1954JChEd..31..226E. doi:10.1021/ed031p226.
  15. ^ Mohr, Peter J.; Taylor, Barry N. (1999). "CODATA recommended values of the fundamental physical constants: 1998" (PDF). Journal of Physical and Chemical Reference Data. 28 (6): 1713–1852. Bibcode:1999JPCRD..28.1713M. doi:10.1063/1.556049. Archived from the original (PDF) on 2017-10-01.
  16. ^ Beenakker, Carlo; Schönenberger, Christian (2006). "Quantum Shot Noise". Physics Today. 56 (5): 37–42. arXiv:cond-mat/0605025. doi:10.1063/1.1583532. S2CID 119339791.
  17. ^ de-Picciotto, R.; Reznikov, M.; Heiblum, M.; Umansky, V.; Bunin, G.; Mahalu, D. (1997). "Direct observation of a fractional charge". Nature. 389 (162–164): 162. arXiv:cond-mat/9707289. Bibcode:1997Natur.389..162D. doi:10.1038/38241. S2CID 4310360.
  18. ^ Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Sartori, G. (2011). "Testing the neutrality of matter by acoustic means in a spherical resonator". Physical Review A. 83 (5): 052101. arXiv:1102.2766. doi:10.1103/PhysRevA.83.052101. S2CID 118579475.
  19. ^ Ahmadi, M.; et al. (2016). "An improved limit on the charge of antihydrogen from stochastic acceleration" (PDF). Nature. 529 (7586): 373–376. doi:10.1038/nature16491. PMID 26791725. S2CID 205247209. Retrieved May 1, 2022.
  20. ^ Hori, M.; et al. (2011). "Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio". Nature. 475 (7357): 484–488. arXiv:1304.4330. doi:10.1038/nature10260. PMID 21796208. S2CID 4376768.
  21. ^ Olive, K. A.; et al. (2014). "Review of particle physics" (PDF). Chinese Physics C. 38 (9): 090001. doi:10.1088/1674-1137/38/9/090001. S2CID 118395784.

Further reading

  • Fundamentals of Physics, 7th Ed., Halliday, Robert Resnick, and Jearl Walker. Wiley, 2005
Baca informasi lainnya:

Halaman ini berisi artikel tentang dewa dalam mitologi Yunani. Untuk bulan Jupiter, lihat Io (satelit). Zeus bercinta dengan Io, lukisan karya Antonio da Correggio, 1531 Dalam mitologi Yunani, Io (bahasa Yunani: Ίώ) adalah seorang pendeta Hera di Argos. Dalam mitologi Zeus jatuh cinta pada Io dan menidurinya. Untuk mencegah Hera mengetahui apa yang terjadi, Zeus menutupi dunia dengan awan hitam tebal. Namun Hera malah menjadi curiga, dia lalu turun dari Gunung Olimpus dan menghilangkan awa…

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Untuk kegunaan lain, lihat Dadu (disambiguasi). Dua buah dadu bersisi enam dengan su…

Населе́ние СССР Содержание 1 Численность 2 Демографические показатели 3 Рождаемость 3.1 Рождаемость на 100 жителей РСФСР и младенческая смертность[32] 4 Этнические группы 5 Демографические потери 5.1 Довоенные демографическое потери 5.2 Демографические последствия Великой Отеч…

الدوري المنغولي لكرة القدم 2013 تفاصيل الموسم الدوري المنغولي لكرة القدم  البلد منغوليا  البطل نادي إركيم  عدد المشاركين 7   الدوري المنغولي لكرة القدم 2012  الدوري المنغولي لكرة القدم 2014  تعديل مصدري - تعديل   الدوري المنغولي لكرة القدم 2013 هو موسم من الدوري المن…

Orang Yahudi Agama Yahudi Agama Tuhan Allah dalam Yudaisme Dasar Iman Yahudi Kaballah Hari raya Doa Halakha Mitzvot (Daftar: 613) Rabi Sinagoge Pembacaan gulungan Taurat Minhag/Kebiasaan Tzedakah Teks Tanakh: Taurat Nevi'im Ketuvim Literatur Rabinik Talmud Mishnah Gemara Etnis Ashkenazi Sefardim Mizrahi Beta Israel Penduduk (Daftar) Israel AS Rusia/Uni Soviet SpanyolKanada Jerman Prancis Britania Raya Amerika Latin Polandia Dunia Arab Malaysia Yaman Yahudi terkenal menurut negara Daftar Komunita…

British historian and economist The Right HonourableThe Lord SkidelskyFBAOfficial portrait, 2024Member of the House of Lords Lord TemporalIncumbentAssumed office 15 July 1991Life Peerage Personal detailsBornRobert Jacob Alexander (1939-04-25) 25 April 1939 (age 84)Harbin, Republic of ChinaNationalityBritishPolitical partyNone (Crossbench)Other politicalaffiliationsLabour (until 1981)SDP (1981–88)'Continuing' SDP (1988–90)Conservative (1992–2001)Alma materJesus College, OxfordNuffi…

Pada tahun 1776, Thomas Jefferson dalam Deklarasi Kemerdekaan Amerika Serikat mengajukan filosofi bahwa hak asasi manusia melekat pada semua orang, menegaskan bahwa semua semua orang diciptakan sederajat, bahwa mereka dikaruniai oleh Penciptanya dengan Hak-hak yang tidak dapat disangkal, dan bahwa di antara hak-hak itu adalah Kehidupan, Kemerdekaan, dan upaya mengejar Kebahagiaan. Sejarawan Joseph J. Ellis menyebut Deklarasi Kemerdekaan Amerika Serikat sebagai pernyataan hak asasi manusia dalam …

Président du gouvernement de Nouvelle-Calédonie Insigne du gouvernement de la Nouvelle-Calédonie. Titulaire actuelLouis Mapoudepuis le 16 juillet 20212 ans, 9 mois et 2 joursVice-présidente : Isabelle Champmoreau Création 28 mai 1999 Mandant Gouvernement de la Nouvelle-Calédonie Durée du mandat 5 ans[1] Premier titulaire Jean Lèques Résidence officielle Hôtel du Gouvernement de la Nouvelle-Calédonie Rémunération 838 000 XPF (7 022,44 €) brut…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Robert Guiscard de HautevilleRobert Guiscard (oleh Merry-Joseph Blondel)PasanganAlberadaSikelgaitaAnakBohemond I dari AntiokhiaEmmaRoger Borsa dari Puglia dan CalabriaRobert ScalioGuido d'Altavilla, sebastosKeluarga bangsawanWangsa HautevilleBapakTancredi d'AltavillaIbuFressendaLahirskt. 1015Cotentin, NormandiaMeninggal17 Juli 1085 (usia 70)Atheras, Lixouri utaraPemakamanSantissima Trinità, Venosa Koin Robert Guiscard. Robert Guiscard (/ɡiːˈskɑːr/;[1] Modern bahasa Prancis: […

Hmongic language of Guizhou, China GejiaGe, Chong'an River Miao家语, 重安江苗语Native toChinaRegionGuizhouEthnicityGejiaNative speakers(60,000 cited 1995)[1]Language familyHmong–Mien HmongicWest Hmongic? Chuanqiandian clusterGejiaDialects Gejia Dongjia Language codesISO 639-3hmjGlottologgeee1239 The Ge or Gejia language (Chinese: 家语), also known as Chong'anjiang Miao (Chinese: 重安江苗语), is a West Hmongic language of Huangping County, Guizhou, China. The …

Red-tailed hawk living in New York City (1990–2023) This article is about the hawk. For other uses, see Pall Mall. Pale MalePale Male eating a pigeon in 2011SpeciesButeo jamaicensisSexMaleHatched1990 (1990)DiedMay 16, 2023(2023-05-16) (aged 32–33)Long Island, New York, U.S.Nation fromUnited StatesKnown forNesting on 927 Fifth AvenueMate(s) First Love (1992, c. 1995–1997) Chocolate (c. 1992–1995) Blue (1998 – c. September 11, 2001) Lola (2002 – Decembe…

Hotel company based in Abu Dhabi, UAE Rotana HotelsCompany typePrivateIndustryHospitality & TourismFoundedAbu Dhabi, United Arab EmiratesFounderNasser Al Nowais & Selim El ZyrHeadquartersAbu Dhabi, United Arab EmiratesArea servedMiddle East, Africa, Balkans, TurkeyKey peoplePhilip BarnesChief Executive OfficerEddy TannousChief Operating OfficerWebsiteRotana.com Rotana Hotel Management Corporation PJSC (Arabic: روتانا) is a hotel management company in the Middle East, Africa, the Ba…

Public television network in West Virginia West Virginia Public Broadcastingstatewide West VirginiaUnited StatesChannelsDigital: See tables belowProgrammingAffiliationsPBS (1970–present)NPR (1973–present)PRIAPMBBCAPTOwnershipOwnerWest Virginia Educational Broadcasting AuthorityHistoryFirst air dateJuly 14, 1969; 54 years ago (1969-07-14)Former affiliationsNET (1969–1970)Call sign meaningSee tables belowTechnical informationFacility IDSee tables belowERPSee tables belowHAA…

Asian Highway 42 (AH42) adalah bagian dari Jaringan Jalan Asia, sejauh 3.754 kilometer (2.333 mi) dari AH5 di Lanzhou, Tiongkok[1] ke AH1 di Barhi, India.[2] Jalur ini melewati China, Nepal,[3] dan India. yang melewati Gunung Everest. Setengah jalur dari ini yang membentang dari Lhasa ke Lanzhou di Tiongkok dikenal sebagai Rencana Asian Highway.[4] China G109: Lanzhou - Xining - Golmud - Lhasa G318: Lhasa - Zhangmu Nepal Tribhuvan Highway: Kathmandu - Narayan…

Pearl JamPearl Jam pada tahun 2006, kiri ke kanan: Mike McCready, Jeff Ament, Matt Cameron, Eddie Vedder dan Stone GossardInformasi latar belakangNama lainMookie BlaylockAsalSeattle, Washington, Amerika SerikatGenreAlternative rock, grunge, hard rockTahun aktif1990–sekarangLabelEpic, JArtis terkaitGreen River, Soundgarden, Bad Radio, Mother Love Bone, Temple of the Dog, Brad, Wellwater Conspiracy, Mad Season, Three Fish, The RockfordsSitus webwww.pearljam.comAnggotaJeff AmentStone GossardMike …

Marvel Comics superhero Comics character FlatmanFlatman as depicted in G.L.A. #2 (July 2005). Art by Paul Pelletier.Publication informationPublisherMarvel ComicsFirst appearanceThe West Coast Avengersvol. 2 #46 (July 1989)Created byJohn ByrneIn-story informationAlter egoMatt (surname unrevealed)[1]SpeciesHuman mutantTeam affiliationsGreat Lakes AvengersNotable aliasesThe 2-D DefenderDr. Val VenturaAbilities Origami shapeshifting Flat body Elasticity Flatman (Matt) is a superhero appearin…

6th Central Committee← 5th7th →Emblem of the League of Communists of Yugoslavia7 November 1952 – 26 April 1958(5 years, 170 days)OverviewTypeHighest organElection6th CongressMembersTotal109 membersNewcomers50 members (7th)Old58 members (5th)Reelected103 members (7th) This electoral term of the Central Committee was elected by the 6th Congress of the League of Communists of Yugoslavia in 1952, and was in session until the convocation of the 7th Congress in 1958. …

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 外…

Cette carte de 1856 montre les États esclavagistes (gris), les États abolitionnistes (rouge) et les territoires américains (vert) avec le Kansas (non coloré). La loi Kansas-Nebraska (Kansas-Nebraska Act) du 30 mai 1854 crée les territoires du Kansas et du Nebraska, organise des terres nouvelles, abroge le Compromis du Missouri de 1820, et permet aux immigrants installés dans ces territoires de décider si oui ou non ils y introduiront l’esclavage. À l’origine, l’objectif de cet Acte…

Kembali kehalaman sebelumnya