OktonionV matematice se pojmem oktoniony označuje rozšíření kvaternionů. Tvoří osmidimenzionální algebru nad reálnými čísly a je neasociativní. Je to nejstarší známý příklad neasociativního okruhu. Oktoniony tvoří poslední, a tudíž nejobecnější typ tzv. normovaných algeber s dělením (též nazývané Hurwitzovy algebry). Je překvapivé, že existují právě jen čtyři takové algebry: reálná čísla, komplexní čísla, kvaterniony a oktoniony. Principiální rozdíl mezi vektorovými prostory a Hurwitzovými algebrami spočívá právě v operaci dělení: zatímco u vektorů operaci dělení dvou vektorů vůbec nezavádíme (neexistuje), u normovaných algeber s dělením (vzájemně jednoznačná a invertibilní) operace dělení existuje. Hurwitzovy algebry však existují jen ve čtyřech výlučných dimenzích: 1, 2, 4, 8. Dimenze 8 má tedy určité unikátní vlastnosti, dané unikátními vlastnostmi oktonionů. Zatímco reálná čísla, komplexní čísla a kvaterniony mají těsný vztah k regulárním Lieovým grupám typu A, B, C, D, oktoniony mají těsný vztah k tzv. výlučným Lieovým grupám typu G2, F4, E6, E7, E8. Řada teoretických fyziků proto oprávněně usuzuje též na hlubokou roli oktonionů ve fyzice, zejména částicové.[1] Zřejmě kvůli neasociativnosti, která je zdánlivě „nefyzikální“, jsou oktoniony dosud méně známé i používané než kvaterniony. Mírou narušení komutativního a asociativního zákona jsou u oktonionů veličiny zvané komutátor a asociátor. HistorieOktoniony byly popsány v roce 1843 Johnem T. Gravesem, nezávisle na něm je publikoval i Arthur Cayley v roce 1845. Proto jsou někdy nazývány Cayleyova čísla. DefiniceNa oktoniony lze nahlížet jako na osmice reálných čísel, pro které je však – na rozdíl od vektorů – definována vzájemně jednoznačná a invertibilní operace dělení. Každý oktonion je lineární kombinací jednotek, kterými jsou 1, i, j, k, l, li, lj, lk. Oktonion x se dá tedy zapsat ve tvaru
kde xa jsou reálná čísla. Oktoniony se sčítají tak, že se sečtou odpovídající složky (tak jako u komplexních čísel či u kvaternionů), násobí se podle následující tabulky.
VlastnostiNásobení oktonionů není ani komutativní:
ani asociativní:
Související článkyExterní odkazy
Reference
|