Strecke (Geometrie)Eine Strecke (auch Geradenabschnitt oder Geradenstück) ist eine gerade Linie, die von zwei Punkten begrenzt wird; sie ist die kürzeste Verbindung ihrer beiden Endpunkte. Die Begrenzung einer Strecke durch diese Punkte unterscheidet sie von Geraden, die beidseitig unbegrenzt sind, und von Halbgeraden, die nur auf einer Seite begrenzt sind. Euklidische GeometrieDefinitionEine Strecke ist eine gerade Linie in der euklidischen Ebene oder im euklidischen Raum, die von zwei Punkten begrenzt wird. Sind und zwei gegebene Punkte in der Ebene oder im Raum, dann wird die Strecke zwischen diesen beiden Punkten Verbindungsstrecke von und genannt und mit bezeichnet. Strecken lassen sich auch mit Hilfe der Zwischenrelation („… liegt zwischen … und …“) definieren: die Strecke besteht dann aus allen Punkten der Verbindungsgeraden , die zwischen den Punkten und liegen. Je nachdem, ob hierbei die Punkte und mit eingeschlossen werden oder nicht, werden die folgenden Fälle unterschieden:
Wird durch die Reihenfolge der Punkte und eine Orientierung der Strecke vorgegeben, spricht man von einer gerichteten Strecke (auch Pfeil oder gebundener Vektor) . SpezialfälleEine Strecke heißt:
ParameterdarstellungIn der analytischen Geometrie werden Punkte in der euklidischen Ebene oder im euklidischen Raum durch ihre Ortsvektoren beschrieben. Sind und die Ortsvektoren der Punkte und , dann besteht die Strecke aus denjenigen Punkten in der Ebene oder im Raum, deren Ortsvektoren von der Form
sind. In dieser Parameterdarstellung einer Strecke ist ein reeller Parameter, der im Parameterbereich frei gewählt werden kann. Die offene Strecke besteht hier aus den Punkten im Parameterbereich , während die halboffenen Strecken und durch die Bereiche und parametrisiert werden. In baryzentrischen Koordinaten lautet die Parameterdarstellung einer Strecke entsprechend
Hierbei sind und zwei reelle Parameter, die jedoch aufgrund der Bedingung nicht unabhängig voneinander gewählt werden können. Die offene Strecke besteht hier aus den Punkten mit den Parametern , während die halboffenen Strecken und durch die Parameterbereiche und dargestellt werden. EigenschaftenBei der Angabe einer abgeschlossenen oder offenen Strecke ist die Reihenfolge der Endpunkte unerheblich, es gilt also
Unter der Länge der Strecke versteht man den Abstand ihrer beiden Endpunkte. Diese Streckenlänge wird oft mit , gelegentlich auch mit oder bezeichnet. Die Verbindungsstrecke zweier Punkte und kann damit als Menge derjenigen Punkte charakterisiert werden, bei denen die Summe der Abstände minimal ist. Nachdem eine Ellipse gerade dadurch charakterisiert wird, dass die Summe der Abstände zu zwei gegebenen Punkten (den Brennpunkten der Ellipse) konstant ist, ist eine Strecke damit eine spezielle (degenerierte) Ellipse. Eine Strecke kann auch als eine spezielle Kurve angesehen werden. Von allen Kurven, die zwei gegebene Punkte miteinander verbinden, hat die Verbindungsstrecke dieser Punkte die kürzeste Bogenlänge. Lineare AlgebraDefinitionIst ein Vektorraum über den reellen oder komplexen Zahlen, dann heißt eine Teilmenge (abgeschlossene) Strecke, wenn sie durch parametrisiert werden kann. Hierbei sind mit zwei Vektoren, die die Endpunkte der Strecke darstellen. Alternativ kann eine abgeschlossene Strecke auch durch die Konvexkombination als konvexe Hülle ihrer Endpunkte dargestellt werden. In beiden Darstellungen werden durch entsprechende Einschränkung des Parameterbereichs auch offene und halboffene Strecken beschrieben. Eigenschaften
InzidenzgeometrieGeradenaxiomeWesentliche Charakteristika des aus der euklidischen Geometrie stammenden Konzept einer Strecke können in einem sehr allgemeinen Rahmen formuliert werden, der es erlaubt, dieses Konzept in abstrakten Inzidenzgeometrien ganz unabhängig von topologischen oder metrischen Erwägungen darzustellen. Dies wurde u. a. von Ernst Kunz in seinem Lehrbuch Ebene Geometrie gezeigt. Dabei wird eine Inzidenzgeometrie zugrunde gelegt, welche aus einer Punktmenge sowie einer Geradenmenge besteht und welche dabei den folgenden Bedingungen genügt:[1]
Die beiden Bedingungen (A1) und (A2), bedeuten, dass die Inzidenzgeometrie das Verbindungsaxiom erfüllt, während (A3) und (A4) gewährleisten, dass sie gewissen Reichhaltigkeitsanforderungen genügt. Eine Inzidenzgeometrie , welche diese vier Bedingungen erfüllt, nennt Kunz kurz eine Ebene. StreckenaxiomeIn einer in diesem Sinne verstandenen Ebene lässt sich das Konzept einer Strecke durch folgende Streckenaxiome erfassen:[1]
Eine Ebene, welche auch den Bedingungen (B0) bis (B6) genügt, nennt Ernst Kunz eine Ebene mit Strecken. Die Plausibilität dieser Bedingungen macht man sich leicht klar, wenn man als die euklidische Ebene zugrunde legt. Hier sind all diese Bedingungen erfüllt. Die Bedingung (B6) wird von Kunz gemäß den Gegebenheiten in der euklidischen Ebene das Axiom von Pasch genannt. Dort besagt es anschaulich, dass eine Gerade, welche in ein Dreieck „eindringt“, diese auch wieder irgendwo verlassen muss. Der Name des Axioms verweist dabei auf den Mathematiker Moritz Pasch (1843–1930), welcher als erster erkannt hat, dass sich im Rahmen einer axiomatischen Grundlegung der euklidischen Geometrie der in dem Axiom dargestellte Sachverhalt nicht aus den übrigen Axiomen folgern lässt, sondern eigens gefordert werden muss.[1] Wie sich zeigen lässt, ist das System der Streckenaxiome mit dem der hilbertschen Anordnungsaxiome – die Inzidenzaxiome vorausgesetzt – gleichwertig. Die Verbindung zur Zwischenrelation ergibt sich dabei durch die folgende Festlegung:[1]
Ist die genannte Bedingung für drei paarweise verschiedene Punkte erfüllt, so sagt man auch:
Siehe auch
Literatur
Weblinks
Einzelnachweise |