Share to: share facebook share twitter share wa share telegram print page

Active suspension

An active suspension is a type of automotive suspension that uses an onboard control system to control the vertical movement of the vehicle's wheels and axles relative to the chassis or vehicle frame, rather than the conventional passive suspension that relies solely on large springs to maintain static support and dampen the vertical wheel movements caused by the road surface. Active suspensions are divided into two classes: true active suspensions, and adaptive or semi-active suspensions. While adaptive suspensions only vary shock absorber firmness to match changing road or dynamic conditions, active suspensions use some type of actuator to raise and lower the chassis independently at each wheel.

These technologies allow car manufacturers to achieve a greater degree of ride quality and car handling by keeping the chassis parallel to the road when turning corners, preventing unwanted contacts between the vehicle frame and the ground (especially when going over a depression), and allowing overall better traction and steering control. An onboard computer detects body movement from sensors throughout the vehicle and, using that data, controls the action of the active and semi-active suspensions. The system virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating and braking. When used on commercial vehicles such as buses, active suspension can also be used to temporarily lower the vehicle's floor, thus making it easier for passengers to board and exit the vehicle.

Principle

Figure 1
Figure 2
Figure 3

Skyhook theory is that the ideal suspension would let the vehicle maintain a stable posture, unaffected by weight transfer or road surface irregularities, as if suspended from an imaginary hook in the sky continuing at a constant altitude above sea level, therefore remaining stable.

Since an actual skyhook is obviously impractical,[1] real active suspension systems are based on actuator operations. The imaginary line (of zero vertical acceleration) is calculated based on the value provided by an acceleration sensor installed on the body of the vehicle (see Figure 3). The dynamic elements comprise only the linear spring and the linear damper; therefore, no complicated calculations are necessary.[2][3]

A vehicle contacts the ground through the spring and damper in a normal spring damper suspension, as in Figure 1. To achieve the same level of stability as the Skyhook theory, the vehicle must contact the ground through the spring, and the imaginary line with the damper, as in Figure 2. Theoretically, in a case where the damping coefficient reaches an infinite value, the vehicle will be in a state where it is completely fixed to the imaginary line, thus the vehicle will not shake.

Active

Active suspensions, the first to be introduced, use separate actuators which can exert an independent force on the suspension to improve the riding characteristics. The drawbacks of this design are high cost, added complication and mass of the apparatus, and the need for frequent maintenance on some implementations. Maintenance can require specialised tools, and some problems can be difficult to diagnose.

Hydraulic actuation

Hydraulically actuated suspensions are controlled with the use of hydraulics. The first example appeared in 1954, with the hydropneumatic suspension developed by Paul Magès at Citroën. The hydraulic pressure is supplied by a high pressure radial piston hydraulic pump. Sensors continually monitor body movement and vehicle ride level, constantly supplying the hydraulic height correctors with new data. In a matter of a few milliseconds, the suspension generates counter forces to raise or lower the body. During driving maneuvers, the encased nitrogen compresses instantly, offering six times the compressibility of the steel springs used by vehicles up to this time.[4]

In practice, the system has always incorporated the desirable self-levelling suspension and height adjustable suspension features, with the latter now tied to vehicle speed for improved aerodynamic performance, as the vehicle lowers itself at high speed.

This system performed remarkably well in straight ahead driving, including over uneven surfaces, but had little control over roll stiffness.[5]

Millions of production vehicles have been built with variations on this system.

Electronic actuation of hydraulic suspension

Colin Chapman developed the original concept of computer management of hydraulic suspension in the 1980s to improve cornering in racing cars. Lotus fitted and developed a prototype system to a 1985 Excel with electro-hydraulic active suspension, but never offered it for sale to the public, although many demonstration cars were built for other manufacturers.

Sensors continually monitor body movement and vehicle ride level, constantly supplying the computer with new data. As the computer receives and processes data, it operates the hydraulic servos, mounted beside each wheel. Almost instantly, the servo-regulated suspension generates counter forces to body lean, dive, and squat during driving maneuvers.

In 1990, Nissan installed a hydraulic supported MacPherson strut based setup, called Full-Active Suspension that was used in the Nissan Q45 and President. The system used a hydraulic oil pump, a hydraulic cylinder, an accumulator and damping valve, which connected two independent circuits for the front and rear strut assemblies. The system would then recover motion energy to balance the car continuously.[6] The system was revised and is now called Hydraulic Body Motion Control System, installed on the Nissan Patrol and Infiniti QX80.

Williams Grand Prix Engineering prepared an active suspension, devised by designer-aerodynamicist Frank Dernie, for the team's Formula 1 cars in 1992, creating such successful cars that the Fédération Internationale de l'Automobile decided to ban the technology to decrease the gap between Williams F1 team and its competitors.[7]

Computer Active Technology Suspension (CATS) co-ordinates the best possible balance between ride quality and handling by analysing road conditions and making up to 3,000 adjustments every second to the suspension settings via electronically controlled dampers.

The 1999 Mercedes-Benz CL-Class (C215) introduced Active Body Control, where high pressure hydraulic servos are controlled by electronic computing, and this feature is still available. Vehicles can be designed to actively lean into curves to improve occupant comfort.[8][9]

Active anti-roll bar

Active anti-roll bar stiffens under command of the driver or suspension electronic control unit (ECU) during hard cornering. First production car was Mitsubishi Mirage Cyborg in 1988.

Electromagnetic recuperative

In fully active electronically controlled production cars, the application of electric servos and motors married to electronic computing allows for flat cornering and instant reactions to road conditions.

The Bose Corporation has a proof of concept model. The founder of Bose, Amar Bose, had been working on exotic suspensions for many years while he was an MIT professor.[10]

Electromagnetic active suspension uses linear electromagnetic motors attached to each wheel. It provides extremely fast response, and allows regeneration of power consumed, by using the motors as generators. This nearly surmounts the issues of slow response times and high power consumption of hydraulic systems. Electronically controlled active suspension system (ECASS) technology was patented by the University of Texas Center for Electromechanics in the 1990s[11] and has been developed by L-3 Electronic Systems for use on military vehicles.[12] The ECASS-equipped Humvee exceeded the performance specifications for all performance evaluations in terms of absorbed power to the vehicle operator, stability and handling.

Active Wheel

  • Audi active electromechanical suspension system introduced in 2017. It drives each wheel individually and adapts to the prevailing road conditions. Each wheel has an electric motor which is powered by the 48-volt main electrical system. Additional components include gears, a rotary tube together with internal titanium torsion bar and a lever which exerts up to 1,100 Nm (811.3 lb-ft) on the suspension via a coupling rod. Thanks to the front camera, the sedan detects bumps in the road early on and predictively adjusts the active suspension. Even before the car reaches a bump in the road, the preview function developed by Audi transmits the right amount of travel to the actuators and actively controls the suspension. The computer-controlled motors can sense imperfection on the road, and can raise the suspension up from the wheel which would go over the undulation, thus aiding the ride quality. The system will direct the motors on the outside to push up or pull down the suspension while cornering. This will result in a flatter drive and reduced body-roll around corners which in turn means more confident handling dynamics.[15][16][17][18][19][20][21]

Adaptive and semi-active

Adaptive or semi-active systems can only change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. While adaptive suspensions have generally a slow time response and a limited number of damping coefficient values, semi-active suspensions have time response close to a few milliseconds and can provide a wide range of damping values. Therefore, adaptive suspensions usually only propose different riding modes (comfort, normal, sport...) corresponding to different damping coefficients, while semi-active suspensions modify the damping in real time, depending on the road conditions and the dynamics of the car. Though limited in their intervention (for example, the control force can never have different direction than the current vector of velocity of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent times, research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems.

Solenoid/valve actuated

This type is the most economic and basic type of semi-active suspensions. They consist of a solenoid valve which alters the flow of the hydraulic medium inside the shock absorber, therefore changing the damping characteristics of the suspension setup. The solenoids are wired to the controlling computer, which sends them commands depending on the control algorithm (usually the so-called "Sky-Hook" technique).[citation needed]

This type of system is used in Cadillac's Computer Command Ride (CCR) suspension system. The first production car[22] was the Toyota Soarer with semi-active Toyota Electronic Modulated Suspension, from 1983.

In 1985, Nissan introduced a shock absorber using a similar version, called "Super Sonic Suspension," adding an ultrasonic sensor that would provide information that a microcomputer would then interpret, combined with information from the steering, brakes, throttle, and vehicle speed sensor. The adjustment information signals would then modify the shock absorbers when a driver-controlled switch was placed in "Auto". The automatic adjustment could be limited if the switch was placed in "Soft," "Medium," or "Hard" settings. A modified version that didn't use the sonar module was also used, allowing the settings to be manually selected.[23][24] This implementation is currently used industry-wide by a number of manufacturers, provided by Monroe Shock Absorbers called CVSAe, or Continuously Variable Semi-Active electronic.

In 2008, with the introduction of the Nissan GT-R, "DampTronic" was jointly developed by Nissan and Bilstein. DampTronic provides three selectable driver settings that can also interact with the Vehicle Dynamics Control technology to modify the transmission's shift points. The settings are labeled as Normal, Comfort, or R, and can be either set in Normal for automatic adjustment or the "R" setting for high-speed driving, while "Comfort" is for touring and a more compliant ride. The "R" mode enables the vehicle to utilize the yaw angle rate with a reduced steering angle for a crisper, more communicative steering, while the "Comfort" setting produces less vertical G-loading in comparison to the "Normal" or computer determined suspension setting.[25]

Magnetorheological damper

Another method incorporates magnetorheological dampers with a brand name MagneRide. It was initially developed by Delphi Corporation for GM and was standard, as many other new technologies, for Cadillac STS (from model 2002), and on some other GM models from 2003. This was an upgrade for semi-active systems ("automatic road-sensing suspensions") used in upscale GM vehicles for decades. It allows, together with faster modern computers, changing the stiffness of all wheel suspensions independently. These dampers are finding increased usage in the US and already leases to some foreign brands, mostly in more expensive vehicles.[citation needed]

This system was in development for 25 years. The damper fluid contains metallic particles. Through the onboard computer, the dampers' compliance characteristics are controlled by an electromagnet. Essentially, increasing the current flow into the damper magnetic circuit increases the circuit magnetic flux. This in turn causes the metal particles to change their alignment, which increases fluid viscosity thereby raising the compression/rebound rates, while a decrease softens the effect of the dampers by aligning the particles in the opposite direction. If we imagine the metal particles as dinner plates then whilst aligned so they are on edge - viscosity is minimised. At the other end of the spectrum they will be aligned at 90 degrees so flat. Thus making the fluid much more viscous. It is the electric field produced by the electromagnet that changes the alignment of the metal particles. Information from wheel sensors (about suspension extension), steering, acceleration sensors - and other data, is used to calculate the optimal stiffness at that point in time. The fast reaction of the system (milliseconds) allows, for instance, making a softer passing by a single wheel over a bump in the road at a particular instant in time.[citation needed]

Production vehicles

By calendar year:

See also

References

  1. ^ Qazizadeh, Alireza (2017). On Active Suspension in Rail Vehicles (PDF) (Thesis). Stockholm, Sweden: KTH Royal Institute of Technology. p. 35. ISBN 978-91-7729-408-5.
  2. ^ Song, Xubin (2009). "Cost-Effective Skyhook Control for Semiactive Vehicle Suspension Applications". The Open Mechanical Engineering Journal. 3 (1). US: 17. Bibcode:2009OMEJ....3...17S. doi:10.2174/1874155X00903010017.
  3. ^ Hasebe, Masanobu; Phuc, Pham Van; Ohyama, Takumi (2010). "Fundamental Performance of a Hydraulically Actuated Friction Damper for Seismic Isolation System Based on the Skyhook Theory". Journal of Structural and Construction Engineering. 75 (658). Japan: 2133. doi:10.3130/aijs.75.2133. ISSN 1340-4202.
  4. ^ Moonjeli, Varun Joy (2011). Analysis of Hydropneumatic Suspension (Technical report). Amal Jyoti College of Engineering. p. 15. Retrieved 2017-05-07.
  5. ^ Edgar, Julian (2016-07-05). "The Amazing Citroen DS One of the most significant cars ever". Auto Speed (725). Retrieved 2017-05-12.
  6. ^ Zheng, Wang, Gao, Peng, Ruichen, Jingwei. "A Comprehensive Review on Regenerative Shock Absorber System". ResearchGate. ResearchGate GmbH. Retrieved 6 May 2024.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Active suspension". Motor Sport Magazine. December 2001. Retrieved 2017-05-14.
  8. ^ Yao, Jialing; Li, Zhihong; Wang, Meng; Yao, Feifan; Tang, Zheng (October 2018). "Automobile active tilt control based on active suspension". Advances in Mechanical Engineering. 10 (10): 168781401880145. doi:10.1177/1687814018801456.
  9. ^ "How the Active Curve Tilting Feature of the S-Class Coupe Works". BenzInsider.com. 16 February 2014. Retrieved 2 December 2014.
  10. ^ Hanlon, Mike (2004-09-30). "Bose Redefines Automobile Suspension Systems". New Atlas. Retrieved 2017-04-08.
  11. ^ US patent 5999868 
  12. ^ Bryant, Adam; Beno, Joseph; Weeks, Damon (2011). "Benefits of Electronically Controlled Active Electromechanical Suspension Systems (EMS) for Mast Mounted Sensor Packages on Large Off-Road Vehicles". SAE Technical Paper Series. 1. doi:10.4271/2011-01-0269.
  13. ^ Dogget, Scott (2008-12-01). "Michelin to Commercialize Active Wheel; Technology to Appear in 2010 Cars". Green Car Advisor. Edmunds.com. Archived from the original on 2009-02-10. Retrieved 2009-09-15.
  14. ^ "MICHELIN ACTIVE WHEEL Press Kit". Michelin. 2008-09-26. Retrieved 2009-09-15.[permanent dead link]
  15. ^ "Looking ahead to the new Audi A8: Fully active suspension offers tailor-made flexibility" (Press release). Audi. 2017-06-22. Archived from the original on 2017-10-13. Retrieved 2017-06-24.
  16. ^ Adcock, Ian (2017-06-17). "New Audi A8's robot suspension explained". Car. UK. Retrieved 2017-06-24.
  17. ^ Brady, Andrew (2017-06-23). "The New Audi A8 Will Spot Potholes And Adjust The Suspension". Motor 1. UK. Retrieved 2017-06-25.
  18. ^ Collie, Scott (2017-06-22). "Audi's active suspension prepares for the road ahead". New Atlas. Retrieved 2017-06-25.
  19. ^ Vijayenthiran, Viknesh (2017-06-22). "Audi reveals new A8's chassis technology". Motor Authority. US. Retrieved 2017-06-25.
  20. ^ "The innovative shock absorber system from Audi: New technology saves fuel and enhances comfort" (Press release). Audi. 2016-08-10. Archived from the original on 2017-07-20. Retrieved 2017-07-12.
  21. ^ Tingwall, Eric (July 2017). "2019 Audi A8: Flagship Floats on Active Suspension - Official Photos and Info". Car and Driver. US. Retrieved 2017-07-12.
  22. ^ "Technical Development – Chassis". Toyota Motor Corporation. 2012. Retrieved 2015-01-14.
  23. ^ Sugasawa, Fukashi; Kobayashi, Hiroshi; Kakimoto, Toshihiko; Shiraishi, Yasuhiro; Tateishi, Yoshiaki (1985-10-01). "Electronically Controlled Shock Absorber System Used as a Road Sensor Which Utilizes Super Sonic Waves". SAE Technical Paper Series. Vol. 1. Society Automotive Engineers International. doi:10.4271/851652. Retrieved 2017-12-16.
  24. ^ Palmer, Zac. "The 1988-1994 Nissan Maximas had a shockingly ahead-of-its time adaptive suspension". Autoblog. Yahoo Inc. Retrieved 6 May 2024.
  25. ^ "2021 Nissan GT-R Press Kit". Nissan Motor Corporation. Nissan Motor Corporation. Retrieved 14 May 2024.
  26. ^ Yokoya, Yuji; Asami, Ken; Hamajima, Toshimitsu; Nakashim, Noriyuki (1984-02-01). Toyota Electronic Modulated Suspension (TEMS) System for the 1983 Soarer. SAE International Congress and Exposition. Society Automotive Engineers International. doi:10.4271/840341. Retrieved 2017-12-16.
  27. ^ Sugasawa, Fukashi; Kobayashi, Hiroshi; Kakimoto, Toshihiko; Shiraishi, Yasuhiro; Tateishi, Yoshiaki (1985-10-01). "Electronically Controlled Shock Absorber System Used as a Road Sensor Which Utilizes Super Sonic Waves". SAE Technical Paper Series. Vol. 1. Society Automotive Engineers International. doi:10.4271/851652. Retrieved 2017-12-16.
  28. ^ Mullen, Enda (30 June 2019). "The history of the amazing Jaguar XJ". CoventryLive.
  29. ^ "75 Years of Toyota | Technical Development | Chassis". Toyota. 2012. Retrieved 2017-12-16.
  30. ^ Crosse, Jesse (2014-10-28). "The design, development and applications of MagneRide suspension". UK: Autocar. Retrieved 2017-12-16.
  31. ^ Huntingford, Steve. "Jaguar XF Sportbrake review". WhatCar?. Retrieved 11 January 2023.
  32. ^ Naughton, Nora (2024-02-21). "This Chinese EV can shake off snow like a puppy". Business Insider. US. Retrieved 2024-04-20.


Read more information:

Topografia del pianoro delle Kerguelen - la parte in rosso, a sud del pianoro, è il continente Antartide. Localizzazione del pianoro (la macchia bianca corrisponde all'isola della Desolazione (Arcipelago delle Kerguelen). Il pianoro delle Kerguelen è un pianoro oceanico e una grande provincia ignea dell'Oceano Indiano ed è considerato un vero e proprio continente sommerso. Geografia È situato 3.000 km a sud-ovest dell'Australia e la sua superficie è quasi tre volte quella del Giappone.…

Untuk kegunaan lain, lihat Laut (disambiguasi). Laut marjinal seperti yang didefinisikan oleh Organisasi Hidrografi Internasional[1] Berikut ini adalah daftar laut di Lautan Dunia, termasuk laut marjinal, wilayah perairan, berbagai teluk, gelung, dan selat.[2] Terminologi Samudra – empat hingga tujuh badan air terbesar di Samudra Dunia, yang semuanya memiliki nama Samudra. Lihat Perbatasan samudra untuk detailnya. Laut memiliki beberapa definisi:[a] Laut marjinal adalah…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Fadril Aziz Isnaini (3 September 1958 – 2 September 2014) adalah seorang wartawan senior yang tercatat sebagai salah satu pendiri Balai Wartawan Rohana Kudus Bukittinggi pada awal 1980-an, dan pernah menjabat sebagai ketua. Dalam organisa…

6 SenseAlbum studio karya DygtaDirilis10 Mei 2012GenrePopLabelNagaswaraKronologi Dygta 5 Hati Untuk Cinta (2009)5 Hati Untuk Cinta2009 6 Sense (2012) Lucky Seven (2015)Lucky Seven2015 6 Sense adalah sebuah album musik keenam dari grup musik asal Bandung, Dygta. Dirilis pada tahun 2012 dengan lagu Ku Merindukanmu sebagai lagu utama di album ini. Sementara lagu Cinta Tanpa Kata belum diketahui apakah di release atau unreleased video klipnya. Daftar lagu Satu Satunya Ku Merindukanmu Sheila Saat…

The CrowdPoster rilis teatrikalSutradaraKing VidorProduserIrving ThalbergDitulis olehKing VidorJohn V.A. WeaverHarry Behn (tidak disebutkan)PemeranJames MurrayEleanor BoardmanBert RoachSinematograferHenry SharpPenyuntingHugh WynnDistributorMGMTanggal rilis 18 Februari 1928 (1928-02-18) Durasi104 menitNegaraAmerika SerikatBahasaAntarjudul Inggris The Crowd adalah sebuah film bisu Amerika 1928 yang disutradarai oleh King Vidor dan dibintangi oleh Eleanor Boardman dan James Murray. Film terseb…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

SN 2007biتسميات أخرىSN 2007biنوع الحدثمستعر أعظم تصنيف نجميSN.IcPec كوكبةالعذراء [عدل في ويكي بيانات ] مستعر أعظم SN 2007bi أو SN 2007bi هو مستعر أعظم اكتشفه المعمل الوطنى لورانس بيركلي في 6 أبريل 2007 . وكان يحتل صدارة قائمة أشد المستعرات العظمى حتى تاريخ يونيو 2015 حيث اكتشف مستعر أعظم…

SD Negeri Beji 4InformasiDidirikan10 November 1979JenisNegeriAkreditasiANomor Statistik Sekolah101020528008Nomor Pokok Sekolah Nasional20228636Kepala SekolahIka Mulyati S.PdRentang kelasI, II, III, IV, V, VIKurikulumKurikulum 2013StatusSekolah Standar NasionalAlamatLokasiJalan Pakis №1, Beji, Kec. Beji, Depok, Jawa Barat, IndonesiaTel./Faks.(021) 77202289Situs webSitus ResmiSurelsdnbeji4@yahoo.co.idMoto SD Negeri Beji 4 adalah sebuah sekolah dasar negeri yang terletak di Beji, Kec. B…

Main article: 1904 United States presidential election 1904 United States presidential election in New York ← 1900 November 8, 1904 1908 → Turnout83.3%[1] 1.3 pp   Nominee Theodore Roosevelt Alton B. Parker Party Republican Democratic Home state New York New York Running mate Charles W. Fairbanks Henry G. Davis Electoral vote 39 0 Popular vote 859,533 683,981 Percentage 53.13% 42.28% County Results Roosevelt   40-50%  50-…

Untuk kegunaan lain, lihat Moroni. Moroni موروني MūrūnīNegara ComorosPulauGrande ComoreCapital city1962Populasi (2003) • Total60.200 (estimate)Zona waktuUTC+3 (Eastern Africa Time) Peta Komoro menunjukkan letak kota Moroni di Pulau Grande Comore Moroni (bahasa Arab: موروني) adalah kota terbesar di Komoro dan berstatus ibu kota negara sejak 1962. Penduduknya berjumlah 23.400 jiwa (1990). Moroni terletak di pesisir barat Pulau Komoro Besar pada koordinat 11°41…

Artikel ini bukan mengenai Daftar kabupaten dan kota di Maluku. Lambang Provinsi Maluku Utara Peta lokasi Provinsi Maluku Utara di Indonesia Peta lokasi kabupaten dan kota di Maluku Utara Provinsi Maluku Utara memiliki 8 kabupaten serta 2 kota dengan ibukota terletak di Kota Sofifi. Berikut daftar kabupaten dan/atau kota di Maluku Utara No. Kabupaten/kota Ibu kota Bupati/wali kota Luas wilayah (km2)[1] Jumlah penduduk (2024)[1] Kecamatan Kelurahan/desa Lambang Peta lokasi 1 Kabup…

Political action committee of the NRA The Political Victory Fund (NRA-PVF) is the political action committee (PAC) of the National Rifle Association of America (NRA). The Fund contributes money to political campaigns of candidates endorsed by the NRA.[1][2] Chairman Chris W. Cox served as the NRA's chief lobbyist and principal political strategist between 2002 and 2019.[3][4] In this role he also served as the NRA-PVF chairman, and has directed NRA’s electoral e…

Halaman ini memuat daftar cagar budaya di Indonesia yang terdaftar pada Direktorat Pelestarian Cagar Budaya dan Permuseuman. Daftar ini tidak dimaksudkan sebagai suatu daftar yang lengkap atau selalu terbarui. Aceh SumatraUtara SumatraBarat Riau KepRiau Bengkulu Sumatera Selatan Lampung Kep. BangkaBelitung Jambi Banten Jakarta JawaBarat JawaTengah Yogyakarta JawaTimur KalimantanBarat KalimantanTengah KalimantanUtara KalimantanTimur KalimantanSelatan SulawesiBarat SulawesiTengah Gorontalo Sulawes…

Gurun Kalahari (berwarna maroon) & Cekungan Kalahari (oranye) Gurun Kalahari di Namibia Gurun Kalahari adalah sabana yang terdapat di Afrika bagian selatan dengan luas 900.000 km2 yang meliputi sebagian besar Botswana dan beberapa bagian dari Namibia serta Afrika Selatan. Gurun Kalahari memiliki iklim semi-kering dengan bagian gurun dan terdapat padang rumput setelah terjadinya hujan. Gurun Kalahari juga menjadi habitat dari berbagai binatang dan tanaman, karena bukan sepenuhnya gurun p…

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Mineral logam langka, ditunjukkan bersama dengan sebuah koin Amerika Serikat untuk perbandingan. Beberapa macam oksida logam langka diatas digunakan …

О Древнем Израиле см. Израильское царство.  История ИзраиляЗемля обетованная Колена Израилевы Исход Завоевание Ханаана Эпоха судей История древнего Израиля и Иудеи Израильское царство Иудейское царство Вавилонский плен Эпоха Второго Храма Античный период Правл…

  لمعانٍ أخرى، طالع أوليف (توضيح). أوليف   الإحداثيات 41°57′06″N 74°15′07″W / 41.951666666667°N 74.251944444444°W / 41.951666666667; -74.251944444444   [1] تاريخ التأسيس 1740  تقسيم إداري  البلد الولايات المتحدة  التقسيم الأعلى مقاطعة أولستر  خصائص جغرافية  المساحة 65.19 ميل مرب…

Greek politician (born 1978) Eva KailiΕύα ΚαϊλήKaili in 20165th Vice President of the European ParliamentIn office18 January 2022 – 13 December 2022[a]Serving with See listPresidentRoberta MetsolaSucceeded byMarc AngelMember of the European Parliament for GreeceIncumbentAssumed office 28 May 2014Preceded byAnni PodimataMember of the Hellenic ParliamentIn office18 September 2007 – 9 May 2012Succeeded byEvangelos VenizelosConstituencyThessaloniki A…

Mountainous region in Puebla, Mexico Relief map of Puebla The Sierra Norte de Puebla is a rugged mountainous region accounting for the northern third of the state of Puebla, Mexico. It is at the intersection of the Trans-Mexican Volcanic Belt and the Sierra Madre Oriental, between the Mexican Plateau and the Gulf of Mexico coast. From the Mesoamerican period to the 19th century, this area was part of a larger region called Totonacapan, and area dominated by the Totonac people, extending further …

Anniversary of the ratification of the Treaty of Paris (Jan 14) For other uses, see Ratification Day. Ratification DayCongressional Proclamation of Ratification of Treaty of Paris, January 14, 1784DateJanuary 14Next timeJanuary 14, 2025 (2025-01-14)Frequencyannual Ratification Day in the United States is the anniversary of the congressional proclamation of the ratification of the Treaty of Paris, on January 14, 1784, at the Maryland State House in Annapolis, Maryland, by the Confederat…

Kembali kehalaman sebelumnya