Bax works in the field of biomolecular NMR spectroscopy, and has been involved in the development of many of the standard methods in the field. He collaborated extensively with fellow NIH scientists Marius Clore, Angela Gronenborn and Dennis Torchia in the development of multidimensional protein NMR.[5] Bax is a pioneer in the development of triple resonance experiments and technology for resonance assignment of isotopically enriched proteins.[6][7] He was also heavily involved in the development of using residual dipolar couplings[8] and chemical shifts[9] for determining RNA[10] and protein structures.[11]
Much of his recent work focuses on the roles of proteins in membranes.[12][13][14]
He was the world's most cited chemist over two decades (1981-1997).[15][16]
Work during COVID-19 pandemic
Using laser light scattering, Bax examined how speech-generated droplets and aerosols may be a dominant SARS-CoV-2 transmission mode that may be mitigated by wearing face coverings or face masks.[17][18]
^Ikura M; Kay LE; Bax A (1990). "A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin". Biochemistry. 29 (19): 4659–67. doi:10.1021/bi00471a022. PMID2372549.
^Lewis E Kay; Mitsuhiko Ikura; Rolf Tschudin, Ad Bax (1990). "Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins". Journal of Magnetic Resonance. 89 (3): 496–514. Bibcode:1990JMagR..89..496K. doi:10.1016/0022-2364(90)90333-5.
^Tjandra N; Grzesiek S; Bax A (1996). "Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling". Journal of the American Chemical Society. 118 (26): 6264–6272. doi:10.1021/ja960106n.
^Kontaxis G; Delaglio F; Bax A (2005). "Molecular Fragment Replacement Approach to Protein Structure Determination by Chemical Shift and Dipolar Homology Database Mining". Nuclear Magnetic Resonance of Biological Macromolecules. Methods in Enzymology. Vol. 394. pp. 42–78. doi:10.1016/s0076-6879(05)94003-2. ISBN9780121827991. PMID15808217.