Share to: share facebook share twitter share wa share telegram print page

Affine curvature

Special affine curvature, also known as the equiaffine curvature or affine curvature, is a particular type of curvature that is defined on a plane curve that remains unchanged under a special affine transformation (an affine transformation that preserves area). The curves of constant equiaffine curvature k are precisely all non-singular plane conics. Those with k > 0 are ellipses, those with k = 0 are parabolae, and those with k < 0 are hyperbolae.

The usual Euclidean curvature of a curve at a point is the curvature of its osculating circle, the unique circle making second order contact (having three point contact) with the curve at the point. In the same way, the special affine curvature of a curve at a point P is the special affine curvature of its hyperosculating conic, which is the unique conic making fourth order contact (having five point contact) with the curve at P. In other words, it is the limiting position of the (unique) conic through P and four points P1, P2, P3, P4 on the curve, as each of the points approaches P:

In some contexts, the affine curvature refers to a differential invariant κ of the general affine group, which may readily obtained from the special affine curvature k by κ = k3/2dk/ds, where s is the special affine arc length. Where the general affine group is not used, the special affine curvature k is sometimes also called the affine curvature.[1]

Formal definition

Special affine arclength

To define the special affine curvature, it is necessary first to define the special affine arclength (also called the equiaffine arclength). Consider an affine plane curve β(t). Choose coordinates for the affine plane such that the area of the parallelogram spanned by two vectors a = (a1, a2) and b = (b1, b2) is given by the determinant

In particular, the determinant

is a well-defined invariant of the special affine group, and gives the signed area of the parallelogram spanned by the velocity and acceleration of the curve β. Consider a reparameterization of the curve β, say with a new parameter s related to t by means of a regular reparameterization s = s(t). This determinant undergoes then a transformation of the following sort, by the chain rule:

The reparameterization can be chosen so that

provided the velocity and acceleration, /dt and d2β/dt2 are linearly independent. Existence and uniqueness of such a parameterization follows by integration:

This integral is called the special affine arclength, and a curve carrying this parameterization is said to be parameterized with respect to its special affine arclength.

Special affine curvature

Suppose that β(s) is a curve parameterized with its special affine arclength. Then the special affine curvature (or equiaffine curvature) is given by

Here β denotes the derivative of β with respect to s.

More generally,[2][3] for a plane curve with arbitrary parameterization

the special affine curvature is:

provided the first and second derivatives of the curve are linearly independent. In the special case of a graph y = y(x), these formulas reduce to

where the prime denotes differentiation with respect to x.[3][4]

Affine curvature

Suppose as above that β(s) is a curve parameterized by special affine arclength. There are a pair of invariants of the curve that are invariant under the full general affine group[1] — the group of all affine motions of the plane, not just those that are area-preserving. The first of these is

sometimes called the affine arclength (although this risks confusion with the special affine arclength described above). The second is referred to as the affine curvature:

Conics

Suppose that β(s) is a curve parameterized by special affine arclength with constant affine curvature k. Let

Note that det(Cβ) = 1 since β is assumed to carry the special affine arclength parameterization, and that

It follows from the form of Cβ that

By applying a suitable special affine transformation, we can arrange that Cβ(0) = I is the identity matrix. Since k is constant, it follows that Cβ is given by the matrix exponential

The three cases are now as follows.

k = 0
If the curvature vanishes identically, then upon passing to a limit,
so β′(s) = (1, s), and so integration gives
up to an overall constant translation, which is the special affine parameterization of the parabola y = x2/2.
k > 0
If the special affine curvature is positive, then it follows that
so that
up to a translation, which is the special affine parameterization of the ellipse kx2 + k2y2 = 1.
k < 0
If k is negative, then the trigonometric functions in Cβ give way to hyperbolic functions:
Thus
up to a translation, which is the special affine parameterization of the hyperbola

Characterization up to affine congruence

The special affine curvature of an immersed curve is the only (local) invariant of the curve in the following sense:

  • If two curves have the same special affine curvature at every point, then one curve is obtained from the other by means of a special affine transformation.

In fact, a slightly stronger statement holds:

  • Given any continuous function k : [a, b] → R, there exists a curve β whose first and second derivatives are linearly independent, such that the special affine curvature of β relative to the special affine parameterization is equal to the given function k. The curve β is uniquely determined up to a special affine transformation.

This is analogous to the fundamental theorem of curves in the classical Euclidean differential geometry of curves, in which the complete classification of plane curves up to Euclidean motion depends on a single function κ, the curvature of the curve. It follows essentially by applying the Picard–Lindelöf theorem to the system

where Cβ = [ββ″]. An alternative approach, rooted in the theory of moving frames, is to apply the existence of a primitive for the Darboux derivative.

Derivation of the curvature by affine invariance

The special affine curvature can be derived explicitly by techniques of invariant theory. For simplicity, suppose that an affine plane curve is given in the form of a graph y = y(x). The special affine group acts on the Cartesian plane via transformations of the form

with adbc = 1. The following vector fields span the Lie algebra of infinitesimal generators of the special affine group:

An affine transformation not only acts on points, but also on the tangent lines to graphs of the form y = y(x). That is, there is an action of the special affine group on triples of coordinates (x, y, y′). The group action is generated by vector fields

defined on the space of three variables (x, y, y′). These vector fields can be determined by the following two requirements:

  • Under the projection onto the xy-plane, they must to project to the corresponding original generators of the action T1, T2, X1, X2, H, respectively.
  • The vectors must preserve up to scale the contact structure of the jet space
Concretely, this means that the generators X(1) must satisfy
where L is the Lie derivative.

Similarly, the action of the group can be extended to the space of any number of derivatives (x, y, y′, y″,…, y(k)).

The prolonged vector fields generating the action of the special affine group must then inductively satisfy, for each generator X ∈ {T1, T2, X1, X2, H}:

  • The projection of X(k) onto the space of variables (x, y, y′,…, y(k−1)) is X(k−1).
  • X(k) preserves the contact ideal:
where

Carrying out the inductive construction up to order 4 gives

The special affine curvature

does not depend explicitly on x, y, or y, and so satisfies

The vector field H acts diagonally as a modified homogeneity operator, and it is readily verified that H(4)k = 0. Finally,

The five vector fields

form an involutive distribution on (an open subset of) R6 so that, by the Frobenius integration theorem, they integrate locally to give a foliation of R6 by five-dimensional leaves. Concretely, each leaf is a local orbit of the special affine group. The function k parameterizes these leaves.

Human motor system

Human curvilinear 2-dimensional drawing movements tend to follow the equiaffine parametrization.[5] This is more commonly known as the two thirds power law, according to which the hand's speed is proportional to the Euclidean curvature raised to the minus third power.[6] Namely,

where v is the speed of the hand, κ is the Euclidean curvature and γ is a constant termed the velocity gain factor.

See also

References

  1. ^ a b Shirokov 2001b.
  2. ^ Guggenheimer 1977, §7.3.
  3. ^ a b Blaschke 1923, §5.
  4. ^ Shirokov 2001a.
  5. ^ Flash, Tamar; Handzel, Amir A (2007). "Affine differential geometry analysis of human arm movements". Biological Cybernetics. 96 (6): 577–601. doi:10.1007/s00422-007-0145-5. PMC 2799626. PMID 17406889.
  6. ^ Lacquaniti, Francesco; Terzuolo, Carlo; Viviani, Paolo (1983). "The law relating the kinematic and figural aspects of drawing movements". Acta Psychologica. 54 (1–3): 115–130. doi:10.1016/0001-6918(83)90027-6. PMID 6666647.

Sources

Read other articles:

Citra CeriaAlbum studio karya Vina PanduwinataDirilisDesember 1984DirekamSepanjang tahun 1983 di Jackson Recording StudioGenrePopDurasi-LabelJackson RecordsProduser-Kronologi Vina Panduwinata Citra Pesona(1982)Citra Pesona1982 Citra Ceria (1984) Cinta (1986)Cinta1986 Citra Ceria adalah album studio ke-3 dari penyanyi Vina Panduwinata yang dirilis pada akhir tahun 1984. Daftar lagu Didadaku Ada Kamu Dia Duniaku Tersenyum Apa Kabar Selamat Tinggal Kenangan Mohon Ampun Segenggam Harapan Di anta…

MonsterGenreDramaDitulis olehJang Young-chulJung Kyung-soonSutradaraJoo Sung-wooPemeranKang Ji-hwanSung Yu-riPark Ki-woongClaudia KimNegara asalKorea SelatanBahasa asliBahasa KoreaJmlh. episode50ProduksiDurasi70 menitRumah produksiVictory ContentsRilis asliJaringanMunhwa Broadcasting CorporationRilis28 Maret (2016-03-28) –20 September 2016 (2016-9-20) Monster (Hangul: 몬스터; RR: Monseuteo) adalah serial televisi Korea Selatan tahun 2016 yang dibintangi …

Dr. SyekhAli Gomaaعلي جمعة Mufti Besar MesirMasa jabatan28 September 2003 – 11 Februari 2013PresidenHosni MubarakMohamed Hussein Tantawi (Penjabat)Mohamed Morsi PendahuluAhmed el-TayebPenggantiShawki Ibrahim Abdel-Karim Allam Informasi pribadiLahir3 Maret 1952 (umur 72)Bani Suwayf, MesirKebangsaanMesirAlma materUniversitas Al-Azhar (B.A.) (M.A.) (P.H.D.)Universitas Ain Shams (B.Com.)Universitas Liverpool (H.C.)PekerjaanUlamaSitus webdraligomaa.comSunting kotak info …

Voce principale: Juventus Football Club. Juventus FCStagione 1982-1983 Sport calcio Squadra Juventus Allenatore Giovanni Trapattoni All. in seconda Romolo Bizzotto Presidente Giampiero Boniperti Serie A2º Coppa ItaliaVincitore (in Coppa delle Coppe) Coppa dei CampioniFinalista Maggiori presenzeCampionato: Platini, Scirea, Zoff (30)Totale: Platini (52) Miglior marcatoreCampionato: Platini (16)Totale: Platini (28) StadioComunale Abbonati15 166[1] Media spettatori41 877[…

Untuk kegunaan lain, lihat Tarutung (disambiguasi). Institut Agama Kristen Negeri TarutungMotoLam bolon botohon, lam neang ulaon (Batak Toba) (Semakin besar lengan, semakin ringan pekerjaan)Jenisperguruan tinggi negeri berstatus BHMNDidirikan1. 1968 (sebagai Sekolah Guru Agama Swasta Atas Kristen/Protestan atau PGAA)2. 1991 (sebagai Lembaga Pendidikan Tenaga Keguruan – Pendidikan Agama Kristen)3. 1993 (sebagai Akademi Pendidikan Guru Agama Kristen Protestan Negeri atau APGAKPN)4. 1999 (sebagai…

Election in New Mexico See also: 2020 United States Senate elections Not to be confused with 2020 New Mexico State Senate election. 2020 United States Senate election in New Mexico ← 2014 November 3, 2020 2026 →   Nominee Ben Ray Luján Mark Ronchetti Party Democratic Republican Popular vote 474,483 418,483 Percentage 51.73% 45.62% County results Congressional district results Precinct resultsLuján:      40–50%     &…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hasanuddin University – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Hasanuddin UniversityUniversitas HasanuddinTypePublicEstablished10 September 1956[1]RectorJamaluddin Jompa[2]Add…

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Armenia Հայերեն Hayeren Pengucapan[hɑjɛˈɾɛn]Dituturkan di Armenia  Nagorno-Karabakh (tidak diakui secara internasional) Bahasa minoritas:[1] Siprus Polandia RumaniaPenuturRincian data penutur Jumlah penutur beserta (jika ada) metode pengambilan, jenis, tanggal, dan tempat.[2] 6.700.…

Запрос «Ключевский» перенаправляется сюда; см. также другие значения. Василий Осипович Ключевский Имя при рождении Василий Осипович Ключевский Дата рождения 16 (28) января 1841[1] Место рождения Воскресеновка, Пензенский уезд, Пензенская губерния, Российская империя Да…

Chemical compound ClomegestoneIdentifiers IUPAC name (1S,2R,10R,11S,13R,14R,15S)-14-acetyl-8-chloro-14-hydroxy-2,13,15-trimethyltetracyclo[8.7.0.02,7.011,15]heptadeca-6,8-dien-5-one CAS Number5367-84-0PubChem CID56840824ChemSpider32701810UNIIZHW74QJU5VChemical and physical dataFormulaC22H29ClO3Molar mass376.92 g·mol−13D model (JSmol)Interactive image SMILES CC1CC2C3C=C(C4=CC(=O)CCC4(C3CCC2(C1(C(=O)C)O)C)C)Cl InChI InChI=1S/C22H29ClO3/c1-12-9-17-15-11-19(23)18-10-14(25)5-7-20(18,3)16(15)6…

Gena RowlandsRowlands pada tahun 1964LahirVirginia Cathryn RowlandsPekerjaanAktrisTahun aktif1955–sekrangSuami/istriJohn Cassavetes (1954-1989) Gena Rowlands (lahir 19 Juni 1930) merupakan seorang aktris berkebangsaan Amerika Serikat. Dia dilahirkan di Madison, Wisconsin dengan nama Virginia Cathryn Rowlands. Berkarier di dunia film sejak tahun 1956. Filmografi The High Cost of Loving (1958) Shadows (1959) Lonely Are the Brave (1962) The Spiral Road (1962) A Child Is Waiting (1963) Tony R…

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Dilettantistica Acqui 1911. Acqui Unione SportivaStagione 1938-1939Sport calcio Squadra Acqui Allenatore Andrea Viviano Presidente Giuseppe Collino Serie C4º posto nel girone D. Coppa ItaliaPrimo turno eliminatorio. StadioCampo Sportivo Littori…

Flag carrier of Kuwait Kuwait Airwaysالخطوط الجوية الكويتيةal-Khuṭūṭ al-Jawiyyah al-Kuwaītiyyah IATA ICAO Callsign KU KAC KUWAITI Founded1953; 71 years ago (1953)(as Kuwait National Airways)Commenced operations16 March 1954; 70 years ago (1954-03-16)HubsKuwait International AirportFrequent-flyer programOasis ClubFleet size32Destinations52[1]Parent companyKuwait Airways Corporation (KAC)[2]HeadquartersAl Farwaniyah Gove…

City in the Kansai region of Japan This article is about the city in Japan. For the prefecture where the city is located, see Kyoto Prefecture. For other uses, see Kyoto (disambiguation). Designated city in KansaiKyoto 京都市Designated cityFrom top left: Kiyomizu-dera temple, Bamboo Forest of Arashiyama, Kinkaku-ji temple, Dry garden of Ryōan-ji, Katsura Imperial Villa, Fushimi Inari-Taisha shrine, Heian Shrine, and Kyoto Imperial Palace complex FlagSealLocation of Kyoto in Kyoto PrefectureK…

Affiche russe de 1914 symbolisant la Triple-Entente avec Marianne, la Mère Russie et Britannia. La Mère Russie (en russe : Матушка Россия, Matouchka Rossia ou Россия-Матушка Rossia-Matouchka) est la personnification nationale de la Russie : elle apparaît dans les affiches patriotiques, comme statues, etc. Pendant la période soviétique, le terme « Mère patrie » (Родина-Мать, Rodina-Mat) était préféré, puisqu'il représentait mieu…

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Mauro Rabitti Nazionalità  Italia Altezza 180 cm Peso 69 kg Calcio Ruolo Allenatore (ex centrocampista, attaccante) Termine carriera 1991 - giocatore CarrieraSquadre di club1 1975-1976 Sassuolo16 (0)1976-1977 Reggiana0 (0)1977-1979→  Riccione49 (9)1979-1980 Reggiana19 (5)1980-1981 …

Questa voce o sezione sull'argomento centri abitati dei Paesi Bassi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Oude IJsselstreekcomune Oude IJsselstreek – Veduta LocalizzazioneStato Paesi Bassi Provincia Gheldria AmministrazioneCapoluogoGendringen TerritorioCoordinatedel capoluogo51°52′00.1…

Prima della nascita della cosiddetta Era Open del tennis, ossia l'apertura ai tennisti professionisti degli eventi più importanti, tutti i tornei erano riservati ad atleti dilettanti. Nel 1888 tutti i tornei erano amatoriali, tra questi c'erano i tornei del Grande Slam: il Torneo di Wimbledon, e gli U.S. National Championships. Nel 1888 venne disputata la dodicesima edizione del Torneo di Wimbledon questo vide vittoria di Ernest Renshaw che sconfisse nella finale del torneo preliminare il brita…

Четверохолмие (corpora quadrigemina) Четверохолмие (лат. corpora quadrigemina) — четыре бугра, состоящие из верхнего и нижнего двухолмия, образующие верхнюю стенку среднего мозга птиц и млекопитающих и разделенные крестообразной бороздой. У рыб, амфибий и большинства рептилий имеется …

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

Kembali kehalaman sebelumnya