In organic chemistry, an aldol is a structure consisting of a hydroxy group (-OH) two carbons away from either an aldehyde or a ketone. The name combines the suffix 'ol' from the alcohol and the prefix depending on the carbonyl group, either 'ald' for an aldehyde, or 'ket' for a ketone, in which case it referred to as a 'ketol'. An aldol may also use the term β-hydroxy aldehyde (or β-hydroxy ketone for a ketol). The term "aldol" may refer to 3-hydroxybutanal.[1][2]
Aldols are the product of a carbon-carbon bond-formation reaction, giving them wide applicability as a precursor for a variety of other compounds.
Synthesis and reactions
Aldols are usually synthesized from an aldol addition reaction using two aldehydes or an aldehyde and a ketone for a ketol.[1] These reactions may also be done intramolecularly to form 5 or 6 member rings or for stereoselective syntheses in the active area of asymmetric synthesis.
^ abcdKohlpainter, Christian; Schulte, Markus; Falbe, Jürgen; Lappe, Peter; Weber, Jürgen; Frey, Guido D. (15 January 2013). "Aldehydes, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry (7). doi:10.1002/14356007.a01_321.pub3. ISBN9783527303854. Retrieved 1 April 2023 – via Wiley Online Library.
^PubChem. "CID 21282929". National Center for Biotechnology Information. Retrieved 2023-04-15.
^Zhang, Yanping; Mu, Hongliang; Pan, Li; Wang, Xuling; Li, Yuesheng (21 May 2018). "Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers". ACS Catal. 8 (7): 5963–5976. doi:10.1021/acscatal.8b01088 – via ACS Publications.
^Schetter, Bernd; Mahrwald, Rainer (2006). "Modern aldol methods for the total synthesis of polyketides". Angewandte Chemie International Edition. 45 (45): 7506–25. doi:10.1002/anie.200602780. PMID17103481.