Share to: share facebook share twitter share wa share telegram print page

Alkyne

A 3D model of ethyne (acetylene), the simplest alkyne

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond.[1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.[2]

Structure and bonding

In acetylene, the H–C≡C bond angles are 180°. By virtue of this bond angle, alkynes are rod-like. Correspondingly, cyclic alkynes are rare. Benzyne cannot be isolated. The C≡C bond distance of 118 picometers (for C2H2) is much shorter than the C=C distance in alkenes (132 pm, for C2H4) or the C–C bond in alkanes (153 pm).[3]

Illustrative alkynes: a, acetylene, b, two depictions of propyne, c, 1-butyne, d, 2-butyne, e, the naturally occurring 1-phenylhepta-1,3,5-triyne, and f, the strained cycloheptyne. Triple bonds are highlighted blue.

The triple bond is very strong with a bond strength of 839 kJ/mol. The sigma bond contributes 369 kJ/mol, the first pi bond contributes 268 kJ/mol. and the second pi bond 202 kJ/mol. Bonding is usually discussed in the context of molecular orbital theory, which recognizes the triple bond as arising from overlap of s and p orbitals. In the language of valence bond theory, the carbon atoms in an alkyne bond are sp hybridized: they each have two unhybridized p orbitals and two sp hybrid orbitals. Overlap of an sp orbital from each atom forms one sp–sp sigma bond. Each p orbital on one atom overlaps one on the other atom, forming two pi bonds, giving a total of three bonds. The remaining sp orbital on each atom can form a sigma bond to another atom, for example to hydrogen atoms in the parent acetylene. The two sp orbitals project on opposite sides of the carbon atom.

Terminal and internal alkynes

Internal alkynes feature carbon substituents on each acetylenic carbon. Symmetrical examples include diphenylacetylene and 3-hexyne. They may also be asymmetrical, such as in 2-pentyne.

Terminal alkynes have the formula RC2H. An example is methylacetylene (propyne using IUPAC nomenclature). They are often prepared by alkylation of monosodium acetylide.[4] Terminal alkynes, like acetylene itself, are mildly acidic, with pKa values of around 25. They are far more acidic than alkenes and alkanes, which have pKa values of around 40 and 50, respectively. The acidic hydrogen on terminal alkynes can be replaced by a variety of groups resulting in halo-, silyl-, and alkoxoalkynes. The carbanions generated by deprotonation of terminal alkynes are called acetylides.[5]

Naming alkynes

In systematic chemical nomenclature, alkynes are named with the Greek prefix system without any additional letters. Examples include ethyne or octyne. In parent chains with four or more carbons, it is necessary to say where the triple bond is located. For octyne, one can either write 3-octyne or oct-3-yne when the bond starts at the third carbon. The lowest number possible is given to the triple bond. When no superior functional groups are present, the parent chain must include the triple bond even if it is not the longest possible carbon chain in the molecule. Ethyne is commonly called by its trivial name acetylene.

In chemistry, the suffix -yne is used to denote the presence of a triple bond. In organic chemistry, the suffix often follows IUPAC nomenclature. However, inorganic compounds featuring unsaturation in the form of triple bonds may be denoted by substitutive nomenclature with the same methods used with alkynes (i.e. the name of the corresponding saturated compound is modified by replacing the "-ane" ending with "-yne"). "-diyne" is used when there are two triple bonds, and so on. The position of unsaturation is indicated by a numerical locant immediately preceding the "-yne" suffix, or 'locants' in the case of multiple triple bonds. Locants are chosen so that the numbers are low as possible. "-yne" is also used as a suffix to name substituent groups that are triply bound to the parent compound.

Sometimes a number between hyphens is inserted before it to state which atoms the triple bond is between. This suffix arose as a collapsed form of the end of the word "acetylene". The final "-e" disappears if it is followed by another suffix that starts with a vowel.[6]

Structural isomerism

Alkynes having four or more carbon atoms can form different structural isomers by having the triple bond in different positions or having some of the carbon atoms be substituents rather than part of the parent chain. Other non-alkyne structural isomers are also possible.

Synthesis

Cracking

Commercially, the dominant alkyne is acetylene itself, which is used as a fuel and a precursor to other compounds, e.g., acrylates. Hundreds of millions of kilograms are produced annually by partial oxidation of natural gas:[7]

Propyne, also industrially useful, is also prepared by thermal cracking of hydrocarbons.

Alkynes are prepared from 1,1- and 1,2-dihaloalkanes by double dehydrohalogenation. The reaction provides a means to generate alkynes from alkenes, which are first halogenated and then dehydrohalogenated. For example, phenylacetylene can be generated from styrene by bromination followed by treatment of the resulting of styrene dibromide with sodium amide in ammonia:[8][9]

Via the Fritsch–Buttenberg–Wiechell rearrangement, alkynes are prepared from vinyl bromides. Alkynes can be prepared from aldehydes using the Corey–Fuchs reaction and from aldehydes or ketones by the Seyferth–Gilbert homologation.

Vinyl halides are susceptible to dehydrohalogenation.

Reactions, including applications

Featuring a reactive functional group, alkynes participate in many organic reactions. Such use was pioneered by Ralph Raphael, who in 1955 wrote the first book describing their versatility as intermediates in synthesis.[10]

Hydrogenation

Being more unsaturated than alkenes, alkynes characteristically undergo reactions that show that they are "doubly unsaturated". Alkynes are capable of adding two equivalents of H2, whereas an alkene adds only one equivalent.[11] Depending on catalysts and conditions, alkynes add one or two equivalents of hydrogen. Partial hydrogenation, stopping after the addition of only one equivalent to give the alkene, is usually more desirable since alkanes are less useful:

The largest scale application of this technology is the conversion of acetylene to ethylene in refineries (the steam cracking of alkanes yields a few percent acetylene, which is selectively hydrogenated in the presence of a palladium/silver catalyst). For more complex alkynes, the Lindlar catalyst is widely recommended to avoid formation of the alkane, for example in the conversion of phenylacetylene to styrene.[12] Similarly, halogenation of alkynes gives the alkene dihalides or alkyl tetrahalides:

The addition of one equivalent of H2 to internal alkynes gives cis-alkenes.

Alkynes characteristically are capable of adding two equivalents of halogens and hydrogen halides.

The addition of nonpolar E−H bonds across C≡C is general for silanes, boranes, and related hydrides. The hydroboration of alkynes gives vinylic boranes which oxidize to the corresponding aldehyde or ketone. In the thiol-yne reaction the substrate is a thiol.

Addition of hydrogen halides has long been of interest. In the presence of mercuric chloride as a catalyst, acetylene and hydrogen chloride react to give vinyl chloride. While this method has been abandoned in the West, it remains the main production method in China.[13]

Hydration

The hydration reaction of acetylene gives acetaldehyde. The reaction proceeds by formation of vinyl alcohol, which tautomerizes to form the aldehyde. This reaction was once a major industrial process but it has been displaced by the Wacker process. This reaction occurs in nature, the catalyst being acetylene hydratase.

Hydration of phenylacetylene gives acetophenone:[14]

(Ph3P)AuCH3 catalyzes hydration of 1,8-nonadiyne to 2,8-nonanedione:[15]

Tautomerism

Terminal alkyl alkynes exhibit tautomerism. Propyne exists in equilibrium with propadiene:

Cycloadditions and oxidation

Alkynes undergo diverse cycloaddition reactions. The Diels–Alder reaction with 1,3-dienes gives 1,4-cyclohexadienes. This general reaction has been extensively developed. Electrophilic alkynes are especially effective dienophiles. The "cycloadduct" derived from the addition of alkynes to 2-pyrone eliminates carbon dioxide to give the aromatic compound. Other specialized cycloadditions include multicomponent reactions such as alkyne trimerisation to give aromatic compounds and the [2+2+1]-cycloaddition of an alkyne, alkene and carbon monoxide in the Pauson–Khand reaction. Non-carbon reagents also undergo cyclization, e.g. azide alkyne Huisgen cycloaddition to give triazoles. Cycloaddition processes involving alkynes are often catalyzed by metals, e.g. enyne metathesis and alkyne metathesis, which allows the scrambling of carbyne (RC) centers:

Oxidative cleavage of alkynes proceeds via cycloaddition to metal oxides. Most famously, potassium permanganate converts alkynes to a pair of carboxylic acids.

Reactions specific for terminal alkynes

Terminal alkynes are readily converted to many derivatives, e.g. by coupling reactions and condensations. Via the condensation with formaldehyde and acetylene is produced butynediol:[7][16]

In the Sonogashira reaction, terminal alkynes are coupled with aryl or vinyl halides:

The Sonogashira Reaction

This reactivity exploits the fact that terminal alkynes are weak acids, whose typical pKa values around 25 place them between that of ammonia (35) and ethanol (16):

where MX = NaNH2, LiBu, or RMgX.

The reactions of alkynes with certain metal cations, e.g. Ag+ and Cu+ also gives acetylides. Thus, few drops of diamminesilver(I) hydroxide (Ag(NH3)2OH) reacts with terminal alkynes signaled by formation of a white precipitate of the silver acetylide. This reactivity is the basis of alkyne coupling reactions, including the Cadiot–Chodkiewicz coupling, Glaser coupling, and the Eglinton coupling shown below:[17]

In the Favorskii reaction and in alkynylations in general, terminal alkynes add to carbonyl compounds to give the hydroxyalkyne.

Metal complexes

Alkynes form complexes with transition metals. Such complexes occur also in metal catalyzed reactions of alkynes such as alkyne trimerization. Terminal alkynes, including acetylene itself, react with water to give aldehydes. The transformation typically requires metal catalysts to give this anti-Markovnikov addition result.[18]

Alkynes in nature and medicine

According to Ferdinand Bohlmann, the first naturally occurring acetylenic compound, dehydromatricaria ester, was isolated from an Artemisia species in 1826. In the nearly two centuries that have followed, well over a thousand naturally occurring acetylenes have been discovered and reported. Polyynes, a subset of this class of natural products, have been isolated from a wide variety of plant species, cultures of higher fungi, bacteria, marine sponges, and corals.[19] Some acids like tariric acid contain an alkyne group. Diynes and triynes, species with the linkage RC≡C–C≡CR′ and RC≡C–C≡C–C≡CR′ respectively, occur in certain plants (Ichthyothere, Chrysanthemum, Cicuta, Oenanthe and other members of the Asteraceae and Apiaceae families). Some examples are cicutoxin, oenanthotoxin, and falcarinol. These compounds are highly bioactive, e.g. as nematocides.[20] 1-Phenylhepta-1,3,5-triyne is illustrative of a naturally occurring triyne.

Alkynes occur in some pharmaceuticals, including the contraceptive noretynodrel. A carbon–carbon triple bond is also present in marketed drugs such as the antiretroviral Efavirenz and the antifungal Terbinafine. Molecules called ene-diynes feature a ring containing an alkene ("ene") between two alkyne groups ("diyne"). These compounds, e.g. calicheamicin, are some of the most aggressive antitumor drugs known, so much so that the ene-diyne subunit is sometimes referred to as a "warhead". Ene-diynes undergo rearrangement via the Bergman cyclization, generating highly reactive radical intermediates that attack DNA within the tumor.[21]

See also

References

  1. ^ Alkyne. Encyclopædia Britannica
  2. ^ Saul Patai, ed. (1978). The Carbon–Carbon Triple Bond. Vol. 1. John Wiley & Sons. ISBN 9780470771563.
  3. ^ Smith, Michael B.; March, Jerry (2006). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. p. 24. doi:10.1002/0470084960. ISBN 9780470084960.
  4. ^ K. N. Campbell, B. K. Campbell (1950). "n-Butylacetylene". Organic Syntheses. 30: 15. doi:10.15227/orgsyn.030.0015.
  5. ^ Bloch, Daniel R. (2012). Organic Chemistry Demystified (2nd ed.). McGraw-Hill. p. 57. ISBN 978-0-07-176797-2.
  6. ^ The Commission on the Nomenclature of Organic Chemistry (1971) [1958 (A: Hydrocarbons, and B: Fundamental Heterocyclic Systems), 1965 (C: Characteristic Groups)]. Nomenclature of Organic Chemistry (3rd ed.). London: Butterworths. ISBN 0-408-70144-7.
  7. ^ a b Gräfje, Heinz; Körnig, Wolfgang; Weitz, Hans-Martin; Reiß, Wolfgang; Steffan, Guido; Diehl, Herbert; Bosche, Horst; Schneider, Kurt; Kieczka, Heinz (2000). "Butanediols, Butenediol, and Butynediol". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_455. ISBN 978-3527306732.
  8. ^ Kenneth N. Campbell, Barbara K. Campbell (1950). "Phenylacetylene". Organic Syntheses. 30: 72. doi:10.15227/orgsyn.030.0072.
  9. ^ A. Le Coq and A. Gorgues (1979). "Alkyness via Phase Transfer-Catalyzed Dehydrohalogenatiion: Propiolaldehyde Diethyl Acetal". Organic Syntheses. 59: 10. doi:10.15227/orgsyn.059.0010.
  10. ^ Raphael, Ralph Alexander (1955). Acetylenic compounds in organic synthesis. London: Butterworths Scientific Publications. OCLC 3134811.
  11. ^ Rosser & Williams (1977). Modern Organic Chemistry for A-level. Great Britain: Collins. p. 82. ISBN 0003277402.
  12. ^ H. Lindlar; R. Dubuis (1973). "Palladium catalyst for partial reduction of acetylenes". Organic Syntheses; Collected Volumes, vol. 5, p. 880..
  13. ^ Dreher, Eberhard-Ludwig; Torkelson, Theodore R.; Beutel, Klaus K. (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o06_o01. ISBN 978-3527306732.
  14. ^ Fukuda, Y.; Utimoto, K. (1991). "Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst". J. Org. Chem. 56 (11): 3729. doi:10.1021/jo00011a058.
  15. ^ Mizushima, E.; Cui, D.-M.; Nath, D. C. D.; Hayashi, T.; Tanaka, M. (2005). "Au(I)-Catalyzed hydratation of alkynes: 2,8-nonanedione". Organic Syntheses. 83: 55.
  16. ^ Peter Pässler; Werner Hefner; Klaus Buckl; Helmut Meinass; Andreas Meiswinkel; Hans-Jürgen Wernicke; Günter Ebersberg; Richard Müller; Jürgen Bässler; Hartmut Behringer; Dieter Mayer (2008). "Acetylene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_097.pub3. ISBN 978-3527306732.
  17. ^ K. Stöckel and F. Sondheimer (1974). "[18]Annulene". Organic Syntheses. 54: 1. doi:10.15227/orgsyn.054.0001.
  18. ^ Hintermann, Lukas; Labonne, Aurélie (2007). "Catalytic Hydration of Alkynes and Its Application in Synthesis". Synthesis. 2007 (8): 1121–1150. doi:10.1055/s-2007-966002. S2CID 95666091.
  19. ^ Annabelle L. K. Shi Shun; Rik R. Tykwinski (2006). "Synthesis of Naturally Occurring Polyynes". Angew. Chem. Int. Ed. 45 (7): 1034–1057. doi:10.1002/anie.200502071. PMID 16447152.
  20. ^ Lam, Jørgen (1988). Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC): proceedings of a Conference on the Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds (NOARC). Amsterdam: Elsevier. ISBN 0-444-87115-2.
  21. ^ S. Walker; R. Landovitz; W.D. Ding; G.A. Ellestad; D. Kahne (1992). "Cleavage behavior of calicheamicin gamma 1 and calicheamicin T". Proc Natl Acad Sci USA. 89 (10): 4608–12. Bibcode:1992PNAS...89.4608W. doi:10.1073/pnas.89.10.4608. PMC 49132. PMID 1584797.

Read other articles:

HermiguaMunisipalitas BenderaLambang kebesaranHermiguaLokasi di Kepulauan CanariaTampilkan peta Canary IslandsHermiguaHermigua (Spain, Canary Islands)Tampilkan peta Spain, Canary IslandsKoordinat: 28°10′02″N 17°11′32″W / 28.16722°N 17.19222°W / 28.16722; -17.19222Koordinat: 28°10′02″N 17°11′32″W / 28.16722°N 17.19222°W / 28.16722; -17.19222Negara SpanyolKomunitas otonom Kepulauan CanariaProvinsi Santa Cruz de TenerifePu…

Untuk buku karya Dr. Swee Chai Ang, lihat From Beirut to Jerusalem: A Woman Surgeon With the Palestinians. From Beirut to Jerusalem PengarangThomas L. FriedmanNegaraAmerika SerikatBahasaInggrisSubjekLebanon, Israel, PalestinaGenrePeristiwa terkini, memoarPenerbitFarrar, Straus & Giroux Anchor Books (1990)Tanggal terbit1989 Agustus 1990 (sampul lunak; diperluas)Jenis mediaCetakHalaman541 (1990)ISBNISBN 0-385-41372-6 (1990) Invalid ISBNDiikuti olehThe Lexus and the Oli…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. El-Farouk KhakiLL.BBerkas:El-Farouk Khaki nomination campaign launch Apr5-07.jpg Informasi pribadiLahir26 Oktober 1963 (umur 60)TanzaniaPartai politikPartai Demokrat BaruTempat tinggalToronto, OntarioSunting kotak info • L • B El-Farou…

Pour les articles homonymes, voir Liberté (homonymie). La Liberté guidant le peuple par Eugène Delacroix (1830). Discours sur l'organisation des Gardes nationales par Maximilien Robespierre (1790). La devise de la République française. Liberté, Égalité, Fraternité est la devise de la République française et de la république d’Haïti. Elle figure dans l'article 2 de la Constitution française du 4 octobre 1958 et dans l'article 4 de la Constitution haïtienne du 29 mars 1987. Déjà…

Pour les articles homonymes, voir de Rosnay. Joël de RosnayJoël de Rosnay en 2018.BiographieNaissance 12 juin 1937 (86 ans)CurepipeNationalité françaiseActivités Écrivain, conférencier, surfeur, prospectiviste, informaticien, biologiste, professeur d'universitéPère Gaëtan de RosnayMère Natacha de Rosnay (Kolchina) (d)Fratrie Arnaud de RosnayConjoint Stella Candida Jebb (d) (depuis 1959)Enfants Tatiana de RosnayCecilia Fiona Louise de Rosnay (d)Alexis de Rosnay (d)modifier - modif…

ДостопримечательностьСтароакадемический корпусСтароакадемічний корпус 50°27′56″ с. ш. 30°31′13″ в. д.HGЯO Страна  Украина Киев ул. Григория Сковороды, 2 Автор проекта Иоганн-Готфрид Шедель, Андрей Иванович Меленский, Павел Иванович Спарро Архитектор Шедель, Готфр…

16-bit microprocessor Intel 8086A rare Intel C8086 processor in purple ceramic DIP package with side-brazed pinsGeneral informationLaunched1978Discontinued1998[1]Common manufacturer(s)Intel, AMD, NEC, Fujitsu, Harris (Intersil), OKI, Siemens, Texas Instruments, Mitsubishi, Panasonic (Matsushita)PerformanceMax. CPU clock rate5 MHz to 10 MHzData width16 bitsAddress width20 bitsArchitecture and classificationTechnology node3 µmInstruction setx86-16Physical specific…

2003 Japanese anime series directed by Seiji Mizushima This article is about the 2003 TV series. For the 2009 TV series, see Fullmetal Alchemist: Brotherhood. Fullmetal AlchemistKey visual of the series, featuring brothers Edward (right) and Alphonse Elric (left)鋼の錬金術師(Hagane no Renkinjutsushi)GenreAdventure[1]Dark fantasy[2]Steampunk[3] Anime television seriesDirected bySeiji MizushimaProduced byMasahiko MinamiHirō MaruyamaRyo ŌyamaWritten by…

سفارة البرتغال في بولندا البرتغال بولندا الإحداثيات 52°13′28″N 21°04′00″E / 52.224475°N 21.06665°E / 52.224475; 21.06665 البلد بولندا  المكان وارسو الاختصاص بولندا  الموقع الالكتروني الموقع الرسمي تعديل مصدري - تعديل   سفارة البرتغال في بولندا هي أرفع تمثيل دبلوماسي[1] لدو…

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Endless Love Jeanette song – news · newspapers · books · scholar · JSTO…

Hill in Norway RødkleivaLocationNordmarka, Oslo, NorwayNearest major cityOsloCoordinates59°59′08″N 10°39′14″E / 59.98556°N 10.65389°E / 59.98556; 10.65389Vertical169 m (554 ft)Top elevation479 m (1,572 ft) AMSLBase elevation310 m (1,017 ft)Trails1Longest run422.5 m (1,386 ft)Lift systemDouble pull-hook Rødkleiva is a hill located in Nordmarka in Oslo, Norway. It was taken into use as a slalom hill in 1947 and was …

City in Mecklenburg-Vorpommern, Germany Town in Mecklenburg-Vorpommern, GermanyStralsund Town Clockwise from top: view over the city with St Nicholas Church; skyline of the city seen from Altefähr at night; city hall; view over the city and its three city ponds; Ozeaneum, St Mary's Church and St James' Church; St James' Church FlagCoat of armsLocation of Stralsund within Vorpommern-Rügen district Stralsund Show map of GermanyStralsund Show map of Mecklenburg-VorpommernCoordinates: 54°18′33…

Archery at the Olympics Women's individualat the Games of the XXI OlympiadVenueOlympic Archery Field, JolietteDates27–30 JulyCompetitors27 from 16 nationsWinning score2499Medalists Luann Ryon  United States Valentina Kovpan  Soviet Union Zebiniso Rustamova  Soviet Union← 19721980 → Archery at the1976 Summer OlympicsIndividualmenwomenvte The women's individual archery event at the 1976 Summer Olympics was part of the archery programme. The event co…

WWE pay-per-view and livestreaming event King and Queen of the RingPromotional poster featuring Logan Paul, Cody Rhodes, Sami Zayn, Becky Lynch, Jade Cargill, and Bianca BelairPromotionWWEBrand(s)RawSmackDownDateMay 25, 2024CityJeddah, Saudi ArabiaVenueJeddah Super DomeWWE Network event chronology ← PreviousBacklash France Next →NXT Battleground King of the Ring chronology ← Previous2015 Next →— King of the Ring tournament chronology ← Previous2021 Next&#…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Aljazair padaOlimpiadeKode IOCALGKONKomite Olimpiade AljazairSitus webwww.coa.dzMedali 5 4 8 Total 17 Penampilan Musim Panas196419681972197619801984198819921996200020042008201220162020Penampilan Musim Dingin19921994–2002200620102014–20182022 Aljazair mula-mula berkompetisi dalam Permainan Olimpiade pada 1964, dan telah berpartisipasi dalam setiap Olimpiade Musim Panas sejak itu, kecuali saat pemboikotan Olimpiade Musim Panas 1976. Aljazair juga mengirim para atlet dalam Olimpiade Musim Dingi…

Tony DaltonDalton pada 2021LahirÁlvaro Luis Bernat Dalton[1]13 Februari 1975 (umur 49)[1]Laredo, Texas, AS[1]KebangsaanAmerika Serikat, MeksikoPendidikanLee Strasberg Theatre Institute[1]PekerjaanAktorpenulis skenarioTahun aktif2000–sekarang Álvaro Luis Bernat Dalton (lahir 13 Februari 1975),[1] dikenal secara profesional sebagai Tony Dalton, adalah aktor berkebangsaan Amerika Serikat dan Meksiko. Sebagian besar kariernya, ia bermain dalam pe…

الفضاء اللوني x,y سي آي إي 1931، ويظهر أيضا لونيات المنابع الضوئية للجسم الأسود عند درجات حرارة مختلفة، وخطوط درجة الحرارة اللونية المترابطة الثابتة. اللونية (بالإنجليزية: Chromaticity)‏ هي صفة لنوعية اللون بغض النظر عن استضوائه، أي كما يحدد بصبغته وتلونه (أو الإشباع، والصفاء، والشد…

1971 World Championships in FencingHost cityVienna, Austria← 1970 Ankara 1973 Gothenburg → The 1971 World Fencing Championships were held in Vienna, Austria. The event took place from July 4 to July 17, 1971.[1] Medal table RankNationGoldSilverBronzeTotal1 Soviet Union (URS)41382 France (FRA)20023 Hungary (HUN)13044 Italy (ITA)11135 Poland (POL)03146 Sweden (SWE)00227 Romania (ROU)0011Totals (7 entries)8882…

Emperor of Japan (869–949) Emperor Yōzei陽成天皇(from the Ogura Hyakunin Isshu)Emperor of JapanReignDecember 18, 876 – March 4, 884CoronationJanuary 20, 877PredecessorSeiwaSuccessorKōkōBornJanuary 2, 869Somedono In, Heian Kyō (Kyōto)DiedOctober 23, 949(949-10-23) (aged 80)Heian Kyō (Kyōto)BurialKaguragaoka no Higashi no misasagi (神楽岡東陵) (Kyōto)Issue Prince Motoyoshi Prince Motonaga Prince Mototoshi Princess Chōshi Princess Genshi Prince Motohira Minamoto no Kiyoka…

Kembali kehalaman sebelumnya