Solid-liquid extraction based ambient ionization is based on the use of a charged spray, for example electrospray to create a liquid film on the sample surface.[3][6] Molecules on the surface are extracted into the solvent. The action of the primary droplets hitting the surface produces secondary droplets that are the source of ions for the mass spectrometer.
Desorption electrospray ionization (DESI) is one of the original ambient ionization sources[7] and uses an electrospray source to create charged droplets that are directed at a solid sample. The charged droplets pick up the sample through interaction with the surface and then form highly charged ions that can be sampled into a mass spectrometer.[8]
Desorption atmospheric pressure photoionization (DAPPI) is a solid-liquid extraction ambient ionization method that enables the direct analysis of samples deposited on surfaces by means of a jet of hot solvent vapour and ultraviolet light. The hot jet thermally desorbs the sample from a surface and the vaporized sample is ionized by a vacuum ultraviolet light and consequently sampled into a mass spectrometer.[9]
Plasma-based techniques
Plasma-based ambient ionization is based on an electrical discharge in a flowing gas that produces metastable atoms and molecules and reactive ions. Heat is often used to assist in the desorption of volatile species from the sample. Ions are formed by chemical ionization in the gas phase.
One proposed mechanism involves Penning ionization of ambient water clusters in a helium discharge:
.
The protonated water clusters can then protonate the sample molecules via
.
For this ionization pathway, the gas-phase acidity of the protonated water clusters and the gas-phase basicity of the analyte molecule are of crucial importance. However, since especially smaller protonated water clusters with n = 1,2,3... exhibit very high gas-phase acidities, even compounds with a rather low gas-phase basicity are readily ionized by proton transfer, yielding [M+H]+ quasimolecular ions.[10][11]
Besides protonated water clusters, other positively charged reagent ions, such as NO+, O2+, NO2+ and CO2+, may be formed in the afterglow region.[10][11][12][13] These additional reagent ions are capable of ionizing compounds via charge-transfer processes and, thus, offer alternative routes of ionization besides proton transfer, leading to a broader range of suitable analytes. Nevertheless, these ionization mechanisms may also lead to the formation of adducts and oxidation of the original analyte compounds.[11]
Although most applications focus on the detection of positive ions, measurements in the negative mode are for most of the plasma-based ion sources also possible. In this case, reagent ions, such as O2–, can deprotonate the analyte molecules to give [M–H]– quasimolecular ions, or form adducts with species such as NO3–, yielding [M+NO3]– ions.[11][13] Measurements in the negative ion mode are especially favorable when the analyte molecules exhibit a high gas-phase acidity, as it is the case e.g. for carboxylic acids.
One of the most used plasma-based techniques for ambient ionization is probably Direct analysis in real time (DART), since it is commercially available. DART is an atmospheric pressureion source that operates by exposing the sample to a gas stream (typically helium or nitrogen) that contains long-lived electronically or excited neutral atoms, vibronically excited molecules (or "metastables"). Excited states are formed in a glow discharge in a chamber through which the gas flows.[14]
Laser assisted
Laser-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray or plasma to create ions. Lasers with ultraviolet and infrared wavelengths and nanosecond to femtosecond pulse widths have been used. Although atmospheric pressure MALDI is performed under ambient conditions,[15] it is not generally considered to be an ambient mass spectrometry technique.[16][17]
Laser ablation was first coupled with mass spectrometry in the 1980s for the analysis of metals using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).[18] The laser ablates the sample material that is introduced into an ICP to create atomic ions.
Infrared laser desorption can be coupled with atmospheric pressure chemical ionization using laser desorption atmospheric pressure chemical ionization (LD-APCI).[19] For ambient ionization with a spray, the sample material is deposited on a target near the spray. The laser desorbs or ablates material from the sample that is ejected from the surface and into the spray, which can be an APCI spray with a corona discharge or an electrospray. Ambient ionization by electrospray-assisted laser desorption/ionization (ELDI) can be accomplished with ultraviolet[20] and infrared lasers[21] to the desorb material into the electrospray plume. Similar approaches to laser desorption/ablation into an electrospray are matrix-assisted laser desorption electrospray ionization (MALDESI),[22]laser ablation electrospray ionization (LAESI),[23] laser assisted desorption electrospray ionization (LADESI),[24] laser desorption electrospray ionization (LDESI),[25][26] laser ablation mass spectrometry (LAMS),[27] and laser desorption spray post-ionization (LDSPI).[28] The term laser electrospray mass spectrometry has been used to denote the use of a femtosecond laser for ablation.[29][30] Laser ablation into an electrospray produces highly charged ions that are similar to those observed in direct electrospray.
An alternative ionization approach following laser desorption is a plasma. UV laser ablation can be combined with a flowing afterglow plasma for mass spectrometry imaging of small molecules.[31] and IR desorption has been combined with a metastable ion source.[32]
Two step non-laser
In two-step non-laser methods, the material removal from the sample and the ionization steps are separate.
Probe electrospray ionization (PESI) is a modified version of conventional electrospray ionization in which the capillary for sample solution transferring is replaced by a solid needle with a sharp tip.[33] Compared with conventional electrospray ionization, high salt tolerance, direct sampling, and low sample consumption are found with PESI. PESI is not a continuous process; the needle for sampling and spraying is driven up and down at a frequency of 3–5 Hz.
Vapor-ion, charge transfer reaction
The analytes are in the vapor phase. This includes breath, odors, VOCs, and other molecules with low volatility that, due to the constant improvements in sensitivity, are detectable in the vapor phase despite their low vapor pressure. Analyte ions are produced via gas-phase chemical reactions, where charging agents collide with the analyte molecules and transfer their charge. In secondary electro-spray ionization (SESI), a nano-electrospray operated at high temperature produces nanodroplets that evaporate very rapidly to produce ions and protonated water clusters that ionize the vapors of interest. SESI is commonly used for the analysis of trace concentrations of vapors being able to detect low volatility species in the gas phase with molecular masses of up to 700 Da.
Table of techniques
In the table below, ambient ionization techniques are classified in the categories "extraction" (a solid or liquid extraction processes dynamically followed by spray or chemical ionization), "plasma" (thermal or chemical desorption with chemical ionization), "two step" (desorption or ablation followed by ionization), "laser" (laser desorption or ablation followed by ionization), "acoustic" (acoustic desorption followed by ionization), multimode (involving two of the above modes), other (techniques that do not fit into the other categories).[3]
^ abcMonge, María Eugenia; Harris, Glenn A.; Dwivedi, Prabha; Fernández, Facundo M. (2013). "Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization". Chemical Reviews. 113 (4): 2269–2308. doi:10.1021/cr300309q. ISSN0009-2665. PMID23301684.
^ abcdBrüggemann, Martin; Karu, Einar; Hoffmann, Thorsten (2016-02-01). "Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS". Journal of Mass Spectrometry. 51 (2): 141–149. Bibcode:2016JMSp...51..141B. doi:10.1002/jms.3733. ISSN1096-9888. PMID26889930.
^ abcAndrade, Francisco J.; Shelley, Jacob T.; Wetzel, William C.; Webb, Michael R.; Gamez, Gerardo; Ray, Steven J.; Hieftje, Gary M. (2008). "Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase". Analytical Chemistry. 80 (8): 2646–2653. doi:10.1021/ac800156y. ISSN0003-2700. PMID18345693.
^Laiko, Victor V.; Baldwin, Michael A.; Burlingame, Alma L. (2000). "Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 72 (4): 652–657. doi:10.1021/ac990998k. ISSN0003-2700. PMID10701247.
^Ifa, Demian R.; Wu, Chunping; Ouyang, Zheng; Cooks, R. Graham (2010). "Desorption electrospray ionization and other ambient ionization methods: current progress and preview". The Analyst. 135 (4): 669–81. Bibcode:2010Ana...135..669I. doi:10.1039/b925257f. ISSN0003-2654. PMID20309441.
^ abCoon, Joshua J.; McHale, Kevin J.; Harrison, W. W. (2002). "Atmospheric pressure laser desorption/chemical ionization mass spectrometry: a new ionization method based on existing themes". Rapid Communications in Mass Spectrometry. 16 (7): 681–685. Bibcode:2002RCMS...16..681C. doi:10.1002/rcm.626. ISSN0951-4198. PMID11921247.
^Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005). "Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids". Rapid Commun. Mass Spectrom. 19 (24): 3701–4. Bibcode:2005RCMS...19.3701S. doi:10.1002/rcm.2243. PMID16299699.
^Nemes P, Vertes A (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–106. doi:10.1021/ac071181r. PMID17900146.
^ abSampson, Jason S.; Muddiman, David C. (2009). "Atmospheric pressure infrared (10.6 μm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer". Rapid Communications in Mass Spectrometry. 23 (13): 1989–1992. doi:10.1002/rcm.4113. ISSN0951-4198. PMID19504481.
^ abBerisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas (2014). "A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods". Rapid Communications in Mass Spectrometry. 28 (16): 1779–1791. Bibcode:2014RCMS...28.1779B. doi:10.1002/rcm.6960. ISSN0951-4198. PMID25559448.
^ abBrady, John J.; Judge, Elizabeth J.; Levis, Robert J. (2009). "Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization". Rapid Communications in Mass Spectrometry. 23 (19): 3151–3157. Bibcode:2009RCMS...23.3151B. doi:10.1002/rcm.4226. ISSN0951-4198. PMID19714710.
^ abShelley, Jacob T.; Ray, Steven J.; Hieftje, Gary M. (2008). "Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging". Analytical Chemistry. 80 (21): 8308–8313. doi:10.1021/ac801594u. ISSN0003-2700. PMID18826246.
^Jecklin, Matthias Conradin; Gamez, Gerardo; Touboul, David; Zenobi, Renato (2008). "Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food". Rapid Communications in Mass Spectrometry. 22 (18): 2791–2798. Bibcode:2008RCMS...22.2791J. doi:10.1002/rcm.3677. ISSN0951-4198. PMID18697232.
^Neidholdt, Evan L.; Beauchamp, J. L. (2007). "Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry". Analytical Chemistry. 79 (10): 3945–3948. doi:10.1021/ac070261s. ISSN0003-2700. PMID17432828.
^Corso, Gaetano; D'Apolito, Oceania; Garofalo, Daniela; Paglia, Giuseppe; Dello Russo, Antonio (2011). "Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1811 (11): 669–679. doi:10.1016/j.bbalip.2011.05.009. ISSN1388-1981. PMID21683155.
^Chen, Hao; Ouyang, Zheng; Cooks, R. Graham (2006). "Thermal Production and Reactions of Organic Ions at Atmospheric Pressure". Angewandte Chemie International Edition. 45 (22): 3656–3660. doi:10.1002/anie.200600660. ISSN1433-7851. PMID16639755.
^McEwen, Charles N.; McKay, Richard G.; Larsen, Barbara S. (2005). "Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments". Analytical Chemistry. 77 (23): 7826–7831. doi:10.1021/ac051470k. ISSN0003-2700. PMID16316194.
^Steeb, Jennifer; Galhena, Asiri S.; Nyadong, Leonard; Janata, Jiří; Fernández, Facundo M. (2009). "Beta electron-assisted direct chemical ionization (BADCI) probe for ambient mass spectrometry". Chemical Communications (31): 4699–701. doi:10.1039/b909072j. ISSN1359-7345. PMID19641814.
^Takats, Zoltan; Cotte-Rodriguez, Ismael; Talaty, Nari; Chen, Huanwen; Cooks, R. Graham (2005). "Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry". Chemical Communications (15): 1950–1952. doi:10.1039/b418697d. ISSN1359-7345. PMID15834468.
^Cody, Robert B.; Laramée, James A.; Durst, H. Dupont (2005). "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions". Analytical Chemistry. 77 (8): 2297–2302. doi:10.1021/ac050162j. ISSN0003-2700. PMID15828760.
^Nyadong, Leonard; Galhena, Asiri S.; Fernández, Facundo M. (2009). "Desorption Electrospray/Metastable-Induced Ionization: A Flexible Multimode Ambient Ion Generation Technique". Analytical Chemistry. 81 (18): 7788–7794. doi:10.1021/ac9014098. ISSN0003-2700. PMID19689156.
^Haddad, Renato; Sparrapan, Regina; Eberlin, Marcos N. (2006). "Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry". Rapid Communications in Mass Spectrometry. 20 (19): 2901–2905. Bibcode:2006RCMS...20.2901H. doi:10.1002/rcm.2680. ISSN0951-4198. PMID16941547.
^Krieger, Sonja; Hayen, Heiko; Schmitz, Oliver J. (2013). "Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS". Analytical and Bioanalytical Chemistry. 405 (25): 8337–8345. doi:10.1007/s00216-013-7238-x. ISSN1618-2642. PMID23912829. S2CID10841740.
^Haddad, Renato; Sparrapan, Regina; Kotiaho, Tapio; Eberlin, Marcos N. (2008). "Easy Ambient Sonic-Spray Ionization-Membrane Interface Mass Spectrometry for Direct Analysis of Solution Constituents". Analytical Chemistry. 80 (3): 898–903. doi:10.1021/ac701960q. ISSN0003-2700. PMID18179250.
^Chen, Huanwen; Venter, Andre; Cooks, R. Graham (2006). "Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation". Chemical Communications (19): 2042–4. doi:10.1039/b602614a. ISSN1359-7345. PMID16767269.
^Huang, Min-Zong; Hsu, Hsiu-Jung; Wu, Chen-I; Lin, Shu-Yao; Ma, Ya-Lin; Cheng, Tian-Lu; Shiea, Jentaie (2007). "Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry". Rapid Communications in Mass Spectrometry. 21 (11): 1767–1775. Bibcode:2007RCMS...21.1767H. doi:10.1002/rcm.3011. ISSN0951-4198. PMID17479981.
^Grimm, Ronald L.; Beauchamp, J. L. (2003). "Field-Induced Droplet Ionization Mass Spectrometry". The Journal of Physical Chemistry B. 107 (51): 14161–14163. doi:10.1021/jp037099r. ISSN1520-6106.
^Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai (2013). "Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode". Rapid Communications in Mass Spectrometry. 27 (5): 613–620. Bibcode:2013RCMS...27..613R. doi:10.1002/rcm.6499. ISSN0951-4198. PMID23413220.
^Van Berkel, Gary J.; Pasilis, Sofie P.; Ovchinnikova, Olga (2008). "Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry". Journal of Mass Spectrometry. 43 (9): 1161–1180. Bibcode:2008JMSp...43.1161V. doi:10.1002/jms.1440. ISSN1076-5174. PMID18671242.
^Nemes, Peter; Vertes, Akos (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–8106. doi:10.1021/ac071181r. ISSN0003-2700. PMID17900146.
^Cheng, Sy-Chyi; Cheng, Tain-Lu; Chang, Hui-Chiu; Shiea, Jentaie (2009). "Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions". Analytical Chemistry. 81 (3): 868–874. doi:10.1021/ac800896y. ISSN0003-2700. PMID19178334.
^Van Berkel, Gary J.; Kertesz, Vilmos; King, Richard C. (2009). "High-Throughput Mode Liquid Microjunction Surface Sampling Probe". Analytical Chemistry. 81 (16): 7096–7101. doi:10.1021/ac901098d. ISSN0003-2700. PMID19606841.
^Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo (2013). "Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 24 (3): 341–347. Bibcode:2013JASMS..24..341S. doi:10.1007/s13361-012-0564-y. ISSN1044-0305. PMID23423791. S2CID39368022.
^Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth (2011). "Liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit". Analytical and Bioanalytical Chemistry. 402 (1): 261–268. doi:10.1007/s00216-011-5359-7. ISSN1618-2642. PMID21910014. S2CID33571580.
^Harper, Jason D.; Charipar, Nicholas A.; Mulligan, Christopher C.; Zhang, Xinrong; Cooks, R. Graham; Ouyang, Zheng (2008). "Low-Temperature Plasma Probe for Ambient Desorption Ionization". Analytical Chemistry. 80 (23): 9097–9104. doi:10.1021/ac801641a. ISSN0003-2700. PMID19551980.
^McEwen, Charles N.; Pagnotti, Vincent S.; Inutan, Ellen D.; Trimpin, Sarah (2010). "New Paradigm in Ionization: Multiply Charged Ion Formation from a Solid Matrix without a Laser or Voltage". Analytical Chemistry. 82 (22): 9164–9168. doi:10.1021/ac102339y. ISSN0003-2700. PMID20973512.
^Wang, Bo; Ding, Xuelu; Zhao, Zhongjun; Duan, Yixiang (2014). "Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry". International Journal of Mass Spectrometry. 377: 507–514. Bibcode:2015IJMSp.377..507W. doi:10.1016/j.ijms.2014.05.018. ISSN1387-3806.
^Hiraoka, Kenzo; Nishidate, Kentaro; Mori, Kunihiko; Asakawa, Daiki; Suzuki, Shigeo (2007). "Development of probe electrospray using a solid needle". Rapid Communications in Mass Spectrometry. 21 (18): 3139–3144. Bibcode:2007RCMS...21.3139H. doi:10.1002/rcm.3201. ISSN0951-4198. PMID17708527.
^Liu, Jiangjiang; Wang, He; Manicke, Nicholas E.; Lin, Jin-Ming; Cooks, R. Graham; Ouyang, Zheng (2010). "Development, Characterization, and Application of Paper Spray Ionization". Analytical Chemistry. 82 (6): 2463–2471. doi:10.1021/ac902854g. ISSN0003-2700. PMID20158226.
^Huang, Yun-Qing; You, Jin-Qing; Yuan, Bi-Feng; Feng, Yu-Qi (2012). "Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples". The Analyst. 137 (19): 4593–7. Bibcode:2012Ana...137.4593H. doi:10.1039/c2an35856e. ISSN0003-2654. PMID22898704.
^Dixon, R. Brent; Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C. (2008). "Ambient Aerodynamic Ionization Source for Remote Analyte Sampling and Mass Spectrometric Analysis". Analytical Chemistry. 80 (13): 5266–5271. doi:10.1021/ac800289f. ISSN0003-2700. PMID18529018.
^Schäfer, Karl-Christian; Dénes, Júlia; Albrecht, Katalin; Szaniszló, Tamás; Balog, Júlia; Skoumal, Réka; Katona, Mária; Tóth, Miklós; Balogh, Lajos; Takáts, Zoltán (2009). "In Vivo, In Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry". Angewandte Chemie International Edition. 48 (44): 8240–8242. doi:10.1002/anie.200902546. ISSN1433-7851. PMID19746375.
^Bennett, Rachel V.; Morzan, Ezequiel M.; Huckaby, Jacob O.; Monge, María Eugenia; Christensen, Henrick I.; Fernández, Facundo M. (2014). "Robotic plasma probe ionization mass spectrometry (RoPPI-MS) of non-planar surfaces". The Analyst. 139 (11): 2658–62. Bibcode:2014Ana...139.2658B. doi:10.1039/c4an00277f. hdl:11336/4102. ISSN0003-2654. PMID24603806.
^Pagnotti, Vincent S.; Inutan, Ellen D.; Marshall, Darrell D.; McEwen, Charles N.; Trimpin, Sarah (2011). "Inlet Ionization: A New Highly Sensitive Approach for Liquid Chromatography/Mass Spectrometry of Small and Large Molecules". Analytical Chemistry. 83 (20): 7591–7594. doi:10.1021/ac201982r. ISSN0003-2700. PMID21899326.
^Wu, Ching; Siems, William F.; Hill, Herbert H. (2000). "Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs". Analytical Chemistry. 72 (2): 396–403. doi:10.1021/ac9907235. ISSN0003-2700. PMID10658336.
^Martin, Audrey N.; Farquar, George R.; Steele, Paul T.; Jones, A. Daniel; Frank, Matthias (2009). "Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples". Analytical Chemistry. 81 (22): 9336–9342. doi:10.1021/ac901208h. ISSN0003-2700. PMID19842633.
^Hecht, Max; Evard, Hanno; Takkis, Kalev; Veigure, Rūta; Aro, Rudolf; Lohmus, Rynno; Herodes, Koit; Leito, Ivo; Kipper, Karin (2017). "Sponge Spray — Reaching New Dimensions of Direct Sampling and Analysis by MS". Analytical Chemistry. 89 (21): 11592–11597. doi:10.1021/acs.analchem.7b02957. ISSN0003-2700. PMID29028329.
^Van Berkel, Gary J.; Sanchez, Amaury D.; Quirke, J. Martin E. (2002). "Thin-Layer Chromatography and Electrospray Mass Spectrometry Coupled Using a Surface Sampling Probe". Analytical Chemistry. 74 (24): 6216–6223. doi:10.1021/ac020540+. ISSN0003-2700. PMID12510741.
^Neidholdt, Evan L.; Beauchamp, J. L. (2011). "Switched Ferroelectric Plasma Ionizer (SwiFerr) for Ambient Mass Spectrometry". Analytical Chemistry. 83 (1): 38–43. doi:10.1021/ac1013833. ISSN0003-2700. PMID21128617.
^Lin, Jia-Yi; Chen, Tsung-Yi; Chen, Jen-Yi; Chen, Yu-Chie (2010). "Multilayer gold nanoparticle-assisted thermal desorption ambient mass spectrometry for the analysis of small organics". The Analyst. 135 (10): 2668–75. Bibcode:2010Ana...135.2668L. doi:10.1039/c0an00157k. ISSN0003-2654. PMID20721383.
^Yea-Wenn Liou, Jian-Siang Wang, Chien-Chung Chen and Cheng-Huang Lin (2017). "Development of an on-line microextraction method for use in fiber-spray/mass spectrometry". International Journal of Mass Spectrometry. 421: 178–183. Bibcode:2017IJMSp.421..178L. doi:10.1016/j.ijms.2017.07.001.{{cite journal}}: CS1 maint: multiple names: authors list (link)