Share to: share facebook share twitter share wa share telegram print page

Birchfield–Tomasi dissimilarity

In computer vision, the Birchfield–Tomasi dissimilarity is a pixelwise image dissimilarity measure that is robust with respect to sampling effects. In the comparison of two image elements, it fits the intensity of one pixel to the linearly interpolated intensity around a corresponding pixel on the other image.[1] It is used as a dissimilarity measure in stereo matching, where one-dimensional search for correspondences is performed to recover a dense disparity map from a stereo image pair.[2][3][4]

Description

When performing pixelwise image matching, the measure of dissimilarity between pairs of pixels from different images is affected by differences in image acquisition such as illumination bias and noise. Even when assuming no difference in these aspects between an image pair, additional inconsistencies are introduced by the pixel sampling process, because each pixel is a sample obtained integrating the continuous light signal over a finite region of space, and two pixels matching the same feature of the image content may correspond to slightly different regions of the real object that can reflect light differently and can be subject to partial occlusion, depth discontinuity, or different lens defocus, thus generating different intensity signals.[1]

The Birchfield–Tomasi measure compensates for the sampling effect by considering the linear interpolation of the samples. Pixel similarity is then determined by finding the best match between the intensity of a pixel sample in one image and the interpolated function in an interval around a location in the other image.[1]

Considering the stereo matching problem for a rectified stereo pair, where the search for correspondences is performed in one dimension, given two columns and along the same scanline for the left and right image respectively, it is possible to define two symmetric functions

where and are the linear interpolation functions of the left and right image intensity and along the scanline. The Birchfield–Tomasi dissimilarity can then be defined as[1]

In practice the measure can be computed with only a small and constant overhead with respect to the calculation of the simple intensity difference, because it is not necessary to reconstruct the interpolant function. Given that the interpolant is linear within each unit interval centred around a pixel, its minimum is located in one of its extremities. Therefore, can be written as

where

denoting with and the values of the interpolated intensities at the rightmost and leftmost extremities of a one-pixel interval centred around

The other function can be similarly rewritten, completing the expression for .[1]

References

  1. ^ a b c d e Birchfield and Tomasi (1998)
  2. ^ Hirschmüller and Scharstein (2007)
  3. ^ Szeliski and Scharstein (2004)
  4. ^ Morales et al. (2013)
  • Birchfield, Stan; Tomasi, Carlo (1998). "A pixel dissimilarity measure that is insensitive to image sampling". IEEE Transactions on Pattern Analysis and Machine Intelligence. 20 (4). IEEE: 401–406.
  • Hirschmüller, Heiko; Scharstein, Daniel (2007). "Evaluation of cost functions for stereo matching". 2007 IEEE Conference on Computer Vision and Pattern Recognition.
  • Morales, Nestor; Camellini, Gabriele; Felisa, Mirko; Grisleri, Paolo; Zani, Paolo (2013). Performance analysis of stereo reconstruction algorithms. 16th International IEEE Conference on Intelligent Transportation Systems. pp. 1298–1303.
  • Szeliski, Richard; Scharstein, Daniel (2004). "Sampling the disparity space image". IEEE Transactions on Pattern Analysis and Machine Intelligence. 26 (3): 419–425.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya