Share to: share facebook share twitter share wa share telegram print page

Bond order

In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg,[1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.

Bond order gives a rough indication of the stability of a bond. Isoelectronic species have the same bond order.[2]

Examples

The bond order itself is the number of electron pairs (covalent bonds) between two atoms.[3] For example, in diatomic nitrogen N≡N, the bond order between the two nitrogen atoms is 3 (triple bond). In acetylene H–C≡C–H, the bond order between the two carbon atoms is also 3, and the C–H bond order is 1 (single bond). In carbon monoxide, C≡O+, the bond order between carbon and oxygen is 3. In thiazyl trifluoride N≡SF3, the bond order between sulfur and nitrogen is 3, and between sulfur and fluorine is 1. In diatomic oxygen O=O the bond order is 2 (double bond). In ethylene H2C=CH2 the bond order between the two carbon atoms is also 2. The bond order between carbon and oxygen in carbon dioxide O=C=O is also 2. In phosgene O=CCl2, the bond order between carbon and oxygen is 2, and between carbon and chlorine is 1.

In some molecules, bond orders can be 4 (quadruple bond), 5 (quintuple bond) or even 6 (sextuple bond). For example, potassium octachlorodimolybdate salt (K4[Mo2Cl8]) contains the [Cl4Mo≣MoCl4]4− anion, in which the two Mo atoms are linked to each other by a bond with order of 4. Each Mo atom is linked to four Cl ligands by a bond with order of 1. The compound (terphenyl)–CrCr–(terphenyl) contains two chromium atoms linked to each other by a bond with order of 5, and each chromium atom is linked to one terphenyl ligand by a single bond. A bond of order 6 is detected in ditungsten molecules W2, which exist only in a gaseous phase.

Non-integer bond orders

In molecules which have resonance or nonclassical bonding, bond order may not be an integer. In benzene, the delocalized molecular orbitals contain 6 pi electrons over six carbons, essentially yielding half a pi bond together with the sigma bond for each pair of carbon atoms, giving a calculated bond order of 1.5 (one and a half bond). Furthermore, bond orders of 1.1 (eleven tenths bond), 4/3 (or 1.333333..., four thirds bond) or 0.5 (half bond), for example, can occur in some molecules and essentially refer to bond strength relative to bonds with order 1. In the nitrate anion (NO3), the bond order for each bond between nitrogen and oxygen is 4/3 (or 1.333333...). Bonding in dihydrogen cation H+2 can be described as a covalent one-electron bond, thus the bonding between the two hydrogen atoms has bond order of 0.5.[4]

Bond order in molecular orbital theory

In molecular orbital theory, bond order is defined as half the difference between the number of bonding electrons and the number of antibonding electrons as per the equation below.[5][6] This often but not always yields similar results for bonds near their equilibrium lengths, but it does not work for stretched bonds.[7] Bond order is also an index of bond strength and is also used extensively in valence bond theory.

bond order = number of bonding electrons - number of antibonding electrons/2

Generally, the higher the bond order, the stronger the bond. Bond orders of one-half may be stable, as shown by the stability of H+2 (bond length 106 pm, bond energy 269 kJ/mol) and He+2 (bond length 108 pm, bond energy 251 kJ/mol).[8]

Hückel molecular orbital theory offers another approach for defining bond orders based on molecular orbital coefficients, for planar molecules with delocalized π bonding. The theory divides bonding into a sigma framework and a pi system. The π-bond order between atoms r and s derived from Hückel theory was defined by Charles Coulson by using the orbital coefficients of the Hückel MOs:[9][10][clarification needed]

,

Here the sum extends over π molecular orbitals only, and ni is the number of electrons occupying orbital i with coefficients cri and csi on atoms r and s respectively. Assuming a bond order contribution of 1 from the sigma component this gives a total bond order (σ + π) of 5/3 = 1.67 for benzene, rather than the commonly cited bond order of 1.5, showing some degree of ambiguity in how the concept of bond order is defined.

For more elaborate forms of molecular orbital theory involving larger basis sets, still other definitions have been proposed.[11] A standard quantum mechanical definition for bond order has been debated for a long time.[12] A comprehensive method to compute bond orders from quantum chemistry calculations was published in 2017.[7]

Other definitions

The bond order concept is used in molecular dynamics and bond order potentials. The magnitude of the bond order is associated with the bond length. According to Linus Pauling in 1947, the bond order between atoms i and j is experimentally described as

where d1 is the single bond length, dij is the bond length experimentally measured, and b is a constant, depending on the atoms. Pauling suggested a value of 0.353 Å for b, for carbon-carbon bonds in the original equation:[13]

The value of the constant b depends on the atoms. This definition of bond order is somewhat ad hoc and only easy to apply for diatomic molecules.

References

  1. ^ Herzberg, Gerhard (1929) "Zum Aufbau der zweiatomigen Moleküle" Zeitschrift für Physik 57: 601-630
  2. ^ Dr. S.P. Jauhar. Modern's abc Chemistry.
  3. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Bond number". doi:10.1351/goldbook.B00705
  4. ^ Clark R. Landis; Frank Weinhold (2005). Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge, UK: Cambridge University Press. pp. 91–92. ISBN 978-0-521-83128-4.
  5. ^ Jonathan Clayden; Greeves, Nick; Stuart Warren (2012). Organic Chemistry (2nd ed.). Oxford University Press. p. 91. ISBN 978-0-19-927029-3.
  6. ^ Housecroft, C. E.; Sharpe, A. G. (2012). Inorganic Chemistry (4th ed.). Prentice Hall. pp. 35–37. ISBN 978-0-273-74275-3.
  7. ^ a b T. A. Manz (2017). "Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders". RSC Adv. 7 (72): 45552–45581. Bibcode:2017RSCAd...745552M. doi:10.1039/c7ra07400j.
  8. ^ Bruce Averill and Patricia Eldredge, Chemistry: Principles, Patterns, and Applications (Pearson/Prentice Hall, 2007), 409.
  9. ^ Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Prentice-Hall. p. 567. ISBN 0-205-12770-3.
  10. ^ Coulson, Charles Alfred (7 February 1939). "The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method". Proceedings of the Royal Society A. 169 (938): 413–428. Bibcode:1939RSPSA.169..413C. doi:10.1098/rspa.1939.0006.
  11. ^ Sannigrahi, A. B.; Kar, Tapas (August 1988). "Molecular orbital theory of bond order and valency". Journal of Chemical Education. 65 (8): 674–676. Bibcode:1988JChEd..65..674S. doi:10.1021/ed065p674. Retrieved 5 December 2020.
  12. ^ IUPAC Gold Book bond order
  13. ^ Pauling, Linus (March 1, 1947). "Atomic Radii and Interatomic Distances in Metals". Journal of the American Chemical Society. 69 (3): 542–553. doi:10.1021/ja01195a024.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya