Brieskorn manifold
In mathematics, a Brieskorn manifold or Brieskorn–Phạm manifold , introduced by Egbert Brieskorn (1966 , 1966b ), is the intersection of a small sphere around the origin with the singular, complex hypersurface
x
1
k
1
+
⋯ ⋯ -->
+
x
n
k
n
=
0
{\displaystyle x_{1}^{k_{1}}+\cdots +x_{n}^{k_{n}}=0}
studied by Frédéric Pham (1965 ).
Brieskorn manifolds give examples of exotic spheres .[ 1] [ 2]
References
Brieskorn, Egbert V. (1966), "Examples of singular normal complex spaces which are topological manifolds", Proceedings of the National Academy of Sciences of the United States of America , 55 (6): 1395– 1397, doi :10.1073/pnas.55.6.1395 , MR 0198497 , PMC 224331 , PMID 16578636
Brieskorn, Egbert (1966b), "Beispiele zur Differentialtopologie von Singularitäten", Inventiones Mathematicae , 2 (1): 1– 14, doi :10.1007/BF01403388 , MR 0206972 , S2CID 123268657
Hirzebruch, Friedrich ; Mayer, Karl Heinz (1968), O(n)-Mannigfaligkeiten, Exotische Sphären und Singularitäten , Lecture Notes in Mathematics, vol. 57, Berlin-New York: Springer-Verlag , doi :10.1007/BFb0074355 , ISBN 978-3-540-04227-3 , MR 0229251 This book describes Brieskorn's work relating exotic spheres to singularities of complex manifolds.
Milnor, John (1975). "On the 3-dimensional Brieskorn manifolds
M
(
p
,
q
,
r
)
{\displaystyle M(p,q,r)}
" . In Neuwirth, Lee P. (ed.). Knots, Groups and 3-Manifolds: Papers Dedicated to the Memory of R.H. Fox . Annals of Mathematics Studies. Vol. 84. Princeton University Press . pp. 175– 225. ISBN 978-0-691-08167-0 . MR 0418127 .
Pham, Frédéric (1965), "Formules de Picard-Lefschetz généralisées et ramification des intégrales", Bulletin de la Société Mathématique de France , 93 : 333– 367, doi :10.24033/bsmf.1628 , ISSN 0037-9484 , MR 0195868