All extantcephalopods have a two-part beak, or rostrum, situated in the buccal mass and surrounded by the muscular head appendages. The dorsal (upper) mandible fits into the ventral (lower) mandible and together they function in a scissor-like fashion.[1][2] The beak may also be referred to as the mandibles or jaws.[3] These beaks are different from bird beaks because they crush bone while most bird beaks do not.
Composed primarily of chitin and cross-linked proteins,[14][15][16][17] beaks are more-or-less indigestible and are often the only identifiable cephalopod remains found in the stomachs of predatory species such as sperm whales.[18] Cephalopod beaks gradually become less stiff as one moves from the tip to the base, a gradient that results from differing chemical composition. In hydrated beaks of the Humboldt squid (Dosidicus gigas) this stiffness gradient spans two orders of magnitude.[19]
Side view of the lower beak of Chiroteuthis picteti (3.6 mm LRL, 160 mm ML (estimate))[1] 3D red cyan glasses are recommended to view this image correctly.
Side view of the upper beak from the same specimen (2.7 mm URL)[1]
Measurements
The abbreviations LRL and URL are commonly used in teuthology to refer to lower rostral length and upper rostral length, respectively. These are the standard measures of beak size in Decapodiformes; hood length is preferred for Octopodiformes.[18] They can be used to estimate the mantle length and total body weight of the original animal as well as the total ingested biomass of the species.[20][21][22][23][24][25][26]
^ abTanabe, K., Y. Hikida & Y. Iba (2006). Two coleoid jaws from the Upper Cretaceous of Hokkaido, Japan. Journal of Paleontology80(1): 138–145. doi:10.1666/0022-3360(2006)080[0138:TCJFTU2.0.CO;2]
^Zakharov, Y.D. & T.A. Lominadze (1983). New data on the jaw apparatus of fossil cephalopods. Lethaia16(1): 67–78. doi:10.1111/j.1502-3931.1983.tb02000.x
^Kanie, Y. (1998). New vampyromorph (Coleoidea: Cephalopoda) jaw apparatuses from the Late Cretaceous of Japan. Bulletin of Gumma Museum of Natural History2: 23–34.
^Tanabe, K. & N.H. Landman (2002). Morphological diversity of the jaws of Cretaceous Ammonoidea. Abhandlungen der Geologischen Bundesanstalt, Wien57: 157–165.
^Tanabe, K., P. Trask, R. Ross & Y. Hikida (2008). Late Cretaceous octobrachiate coleoid lower jaws from the north Pacific regions. Journal of Paleontology82(2): 398–408. doi:10.1666/07-029.1
^Klug, C., G. Schweigert, D. Fuchs & G. Dietl (2010). First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia43(4): 445–456. doi:10.1111/j.1502-3931.2009.00203.x
^Tanabe, K. (2012). Comparative morphology of modern and fossil coleoid jaw apparatuses. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen266(1): 9–18. doi:10.1127/0077-7749/2012/0243
^Morton, N. & M. Nixon (1987). Size and function of ammonite aptychi in comparison with buccal masses of modem cephalopods. Lethaia20(3): 231–238. doi:10.1111/j.1502-3931.1987.tb02043.x
^Lehmann, U. & C. Kulicki (1990). Double function of aptychi (Ammonoidea) as jaw elements and opercula. Lethaia23: 325–331. doi:10.1111/j.1502-3931.1990.tb01365.x
^Seilacher, A. (1993). Ammonite aptychi; how to transform a jaw into an operculum? American Journal of Science293: 20–32. doi:10.2475/ajs.293.A.20
^Hunt, S. & M. Nixon (1981). A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry68(4): 535–546. doi:10.1016/0305-0491(81)90071-7
^ abClarke, M.R. (1986). A Handbook for the Identification of Cephalopod Beaks. Oxford University Press, Oxford.
^Miserez, A., T. Schneberk, C. Sun, F.W. Zok & J.H. Waite (2008). The transition from stiff to compliant materials in squid beaks. Science319(5871): 1816–1819. doi:10.1126/science.1154117
^Jackson, G.D. (1995). The use of beaks as tools for biomass estimation in the deepwater squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in New Zealand waters. Polar Biology15(1): 9–14. doi:10.1007/BF00236118
^Jackson, G.D. & J.F. McKinnon (1996). Beak length analysis of arrow squid Nototodarus sloanii (Cephalopoda: Ommastrephidae) in southern New Zealand waters. Polar Biology16(3): 227–230. doi:10.1007/BF02329211
^Jackson, G.D., N.G. Buxton & M.J.A. George (1997). Beak length analysis of Moroteuthis ingens (Cephalopoda: Onychoteuthidae) from the Falkland Islands region of the Patagonian Shelf. Journal of the Marine Biological Association of the United Kingdom77(4): 1235–1238. doi:10.1017/S0025315400038765
Aldridge, A.E. (2009). Can beak shape help to research the life history of squid? New Zealand Journal of Marine and Freshwater Research43(5): 1061–1067. doi:10.1080/00288330.2009.9626529
Bolstad, K.S. (2006). Sexual dimorphism in the beaks of Moroteuthis ingens Smith, 1881 (Cephalopoda: Oegopsida: Onychoteuthidae). New Zealand Journal of Zoology33(4): 317–327. doi:10.1080/03014223.2006.9518459
Chen, X., H. Lu, B. Liu, Y. Chen, S. Li & M. Jin (2012). Species identification of Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis and Illex argentinus (Ommastrephidae) using beak morphological variables. Scientia Marina76(3): 473–481.doi:10.3989/scimar.03408.05B
Cherel, Y. & K.A. Hobson (2005). Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proceedings of the Royal Society B: Biological Sciences272(1572): 1601–1607. doi:10.1098/rspb.2005.3115
Clarke, M.R. & N. MacLeod (1974). Cephalopod remains from a sperm whale caught off Vigo, Spain. Journal of the Marine Biological Association of the United Kingdom54(4): 959–968. doi:10.1017/S0025315400057684
Clarke, M.R. & L. Maddock (1988). Beaks of living coleoid Cephalopoda. In: M.R. Clarke & E.R. Trueman (eds.) The Mollusca. Volume 12. Paleontology and Neontology of Cephalopods. Academic Press, San Diego. pp. 121–131.
Clarke, M.R. & R.E. Young (1998). Description and analysis of cephalopod beaks from stomachs of six species of odontocete cetaceans stranded on Hawaiian shores. Journal of the Marine Biological Association of the United Kingdom78(2): 623–641. doi:10.1017/S0025315400041667
Hernańdez-García, V., U. Piatkowski & M.R. Clarke (1998). Development of the darkening of Todarodes sagittatus beaks and its relation to growth and reproduction. South African Journal of Marine Science20(1): 363–373. doi:10.2989/025776198784126485
Hobson, K.A. & Y. Cherel (2006). Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Canadian Journal of Zoology84(5): 766–770. doi:10.1139/z06-049
Lalas, C. (2009). Estimates of size for the large octopus Macroctopus maorum from measures of beaks in prey remains. New Zealand Journal of Marine and Freshwater Research43(2): 635–642. doi:10.1080/00288330909510029
Martínez, P., A. Sanjuan & Á. Guerra (2002). Identification of Illex coindetii, I. illecebrosus and I. argentinus (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean; by body and beak characters. Marine Biology141(1): 131–143. doi:10.1007/s00227-002-0796-7
Ogden, R.S., A.L. Allcock, P.C. Watts & J.P. Thorpe (1998). The role of beak shape in octopodid taxonomy. South African Journal of Marine Science20(1): 29–36. doi:10.2989/025776198784126476
Roeleveld, M.A.C. (2000). Giant squid beaks: implications for systematics. Journal of the Marine Biological Association of the UK80(1): 185–187. doi:10.1017/S0025315499001769
Uchikawa, K., M. Sakai, T. Wakabayashi & T. Ichii (2009). The relationship between paralarval feeding and morphological changes in the proboscis and beaks of the neon flying squid Ommastrephes bartramii. Fisheries Science75(2): 317–323. doi:10.1007/s12562-008-0036-2