Share to: share facebook share twitter share wa share telegram print page

Coulomb wave function

Irregular Coulomb wave function G plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
Irregular Coulomb wave function G plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
image of complex plot of regular Coulomb wave function added

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

Coulomb wave equation

The Coulomb wave equation for a single charged particle of mass is the Schrödinger equation with Coulomb potential[1]

where is the product of the charges of the particle and of the field source (in units of the elementary charge, for the hydrogen atom), is the fine-structure constant, and is the energy of the particle. The solution, which is the Coulomb wave function, can be found by solving this equation in parabolic coordinates

Depending on the boundary conditions chosen, the solution has different forms. Two of the solutions are[2][3]

where is the confluent hypergeometric function, and is the gamma function. The two boundary conditions used here are

which correspond to -oriented plane-wave asymptotic states before or after its approach of the field source at the origin, respectively. The functions are related to each other by the formula

Partial wave expansion

The wave function can be expanded into partial waves (i.e. with respect to the angular basis) to obtain angle-independent radial functions . Here .

A single term of the expansion can be isolated by the scalar product with a specific spherical harmonic

The equation for single partial wave can be obtained by rewriting the laplacian in the Coulomb wave equation in spherical coordinates and projecting the equation on a specific spherical harmonic

The solutions are also called Coulomb (partial) wave functions or spherical Coulomb functions. Putting changes the Coulomb wave equation into the Whittaker equation, so Coulomb wave functions can be expressed in terms of Whittaker functions with imaginary arguments and . The latter can be expressed in terms of the confluent hypergeometric functions and . For , one defines the special solutions [4]

where

is called the Coulomb phase shift. One also defines the real functions

Regular Coulomb wave function F plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1
Regular Coulomb wave function F plotted from 0 to 20 with repulsive and attractive interactions in Mathematica 13.1

In particular one has

The asymptotic behavior of the spherical Coulomb functions , , and at large is

where

The solutions correspond to incoming and outgoing spherical waves. The solutions and are real and are called the regular and irregular Coulomb wave functions. In particular one has the following partial wave expansion for the wave function [5]

Properties of the Coulomb function

The radial parts for a given angular momentum are orthonormal. When normalized on the wave number scale (k-scale), the continuum radial wave functions satisfy [6][7]

Other common normalizations of continuum wave functions are on the reduced wave number scale (-scale),

and on the energy scale

The radial wave functions defined in the previous section are normalized to

as a consequence of the normalization

The continuum (or scattering) Coulomb wave functions are also orthogonal to all Coulomb bound states[8]

due to being eigenstates of the same hermitian operator (the hamiltonian) with different eigenvalues.

Further reading

  • Bateman, Harry (1953), Higher transcendental functions (PDF), vol. 1, McGraw-Hill, archived from the original (PDF) on 2011-08-11, retrieved 2011-07-30.
  • Jaeger, J. C.; Hulme, H. R. (1935), "The Internal Conversion of γ -Rays with the Production of Electrons and Positrons", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 148 (865): 708–728, Bibcode:1935RSPSA.148..708J, doi:10.1098/rspa.1935.0043, ISSN 0080-4630, JSTOR 96298
  • Slater, Lucy Joan (1960), Confluent hypergeometric functions, Cambridge University Press, MR 0107026.

References

  1. ^ Hill, Robert N. (2006), Drake, Gordon (ed.), Handbook of atomic, molecular and optical physics, Springer New York, pp. 153–155, doi:10.1007/978-0-387-26308-3, ISBN 978-0-387-20802-2
  2. ^ Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, p. 569
  3. ^ Messiah, Albert (1961), Quantum mechanics, North Holland Publ. Co., p. 485
  4. ^ Gaspard, David (2018), "Connection formulas between Coulomb wave functions", J. Math. Phys., 59 (11): 112104, arXiv:1804.10976, doi:10.1063/1.5054368
  5. ^ Messiah, Albert (1961), Quantum mechanics, North Holland Publ. Co., p. 426
  6. ^ Formánek, Jiří (2004), Introduction to quantum theory I (in Czech) (2nd ed.), Prague: Academia, pp. 128–130
  7. ^ Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, p. 121
  8. ^ Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, pp. 668–669
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya