Share to: share facebook share twitter share wa share telegram print page

Craton

Cratons of South America and Africa during the Triassic Period when the two continents were joined as part of the Pangea supercontinent

A craton ( /ˈkrtɒn/ KRAYT-on, /ˈkrætɒn/ KRAT-on, or /ˈkrtən/ KRAY-tən;[1][2][3] from Greek: κράτος kratos "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are characteristically composed of ancient crystalline basement rock, which may be covered by younger sedimentary rock. They have a thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth's mantle.

Terminology

Geologic provinces of the world (USGS)

The term craton is used to distinguish the stable portion of the continental crust from regions that are more geologically active and unstable.[4] Cratons are composed of two layers: a continental shield, in which the basement rock crops out at the surface,[5] and a platform which overlays the shield in some areas with sedimentary rock.[6]

The word craton was first proposed by the Austrian geologist Leopold Kober in 1921 as Kratogen, referring to stable continental platforms, and orogen as a term for mountain or orogenic belts. Later Hans Stille shortened the former term to Kraton, from which craton derives.[7]

Examples

Examples of cratons are the Dharwar Craton[8] in India, North China Craton,[9] the East European Craton,[10] the Amazonian Craton in South America,[11] the Kaapvaal Craton in South Africa,[12] the North American Craton (also called the Laurentia Craton),[13] and the Gawler Craton in South Australia.[14]

Structure

Cratons have thick lithospheric roots. Mantle tomography shows that cratons are underlain by anomalously cold mantle corresponding to lithosphere more than twice the typical 100 km (60 mi) thickness of mature oceanic or non-cratonic, continental lithosphere. At that depth, craton roots extend into the asthenosphere,[15] and the low-velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons.[16] Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy and a low intrinsic density. This low density offsets density increases from geothermal contraction and prevents the craton from sinking into the deep mantle. Cratonic lithosphere is much older than oceanic lithosphere—up to 4 billion years versus 180 million years.[17]

Rock fragments (xenoliths) carried up from the mantle by magmas containing peridotite have been delivered to the surface as inclusions in subvolcanic pipes called kimberlites. These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt. Peridotite is strongly influenced by the inclusion of moisture. Craton peridotite moisture content is unusually low, which leads to much greater strength. It also contains high percentages of low-weight magnesium instead of higher-weight calcium and iron.[18] Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting. Harzburgite peridotites represent the crystalline residues after extraction of melts of compositions like basalt and komatiite.[19]

Formation

The process by which cratons were formed is called cratonization. There is much about this process that remains uncertain, with very little consensus in the scientific community.[20] However, the first cratonic landmasses likely formed during the Archean eon. This is indicated by the age of diamonds, which originate in the roots of cratons, and which are almost always over 2 billion years and often over 3 billion years in age.[17] Rock of Archean age makes up only 7% of the world's current cratons; even allowing for erosion and destruction of past formations, this suggests that only 5 to 40 percent of the present continental crust formed during the Archean.[21] Cratonization likely was completed during the Proterozoic. Subsequent growth of continents was by accretion at continental margins.[17]

Root origin

The origin of the roots of cratons is still debated.[22][23][18][20] However, the present understanding of cratonization began with the publication in 1978 of a paper by Thomas H. Jordan in Nature. Jordan proposes that cratons formed from a high degree of partial melting of the upper mantle, with 30 to 40 percent of the source rock entering the melt. Such a high degree of melting was possible because of the high mantle temperatures of the Archean. The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium and thus lower in chemical density than undepleted mantle. This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled, so that the physical density of the cratonic roots matched that of the surrounding hotter, but more chemically dense, mantle.[24][17] In addition to cooling the craton roots and lowering their chemical density, the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle.[25] The resulting mantle roots have remained stable for billions of years.[23] Jordan suggests that depletion occurred primarily in subduction zones and secondarily as flood basalts.[26]

This model of melt extraction from the upper mantle has held up well with subsequent observations.[27] The properties of mantle xenoliths confirm that the geothermal gradient is much lower beneath continents than oceans.[28] The olivine of craton root xenoliths is extremely dry, which would give the roots a very high viscosity.[29] Rhenium–osmium dating of xenoliths indicates that the oldest melting events took place in the early to middle Archean. Significant cratonization continued into the late Archean, accompanied by voluminous mafic magmatism.[30]

However, melt extraction alone cannot explain all the properties of craton roots. Jordan notes in his paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers (120 mi). The great depths of craton roots required further explanation.[26] The 30 to 40 percent partial melting of mantle rock at 4 to 10 GPa pressure produces komatiite magma and a solid residue very close in composition to Archean lithospheric mantle, but continental shields do not contain enough komatiite to match the expected depletion. Either much of the komatiite never reached the surface, or other processes aided craton root formation.[30] There are many competing hypotheses of how cratons have been formed.

Repeated continental collision model

Jordan's model suggests that further cratonization was a result of repeated continental collisions. The thickening of the crust associated with these collisions may have been balanced by craton root thickening according to the principle of isostacy.[26] Jordan likens this model to "kneading" of the cratons, allowing low density material to move up and higher density to move down, creating stable cratonic roots as deep as 400 km (250 mi).[29]

Molten plume model

A second model suggests that the surface crust was thickened by a rising plume of molten material from the deep mantle. This would have built up a thick layer of depleted mantle underneath the cratons.

Subducting ocean slab model

A third model suggests that successive slabs of subducting oceanic lithosphere became lodged beneath a proto-craton, underplating the craton with chemically depleted rock.[29][18][22]

Impact origin model

A fourth theory presented in a 2015 publication suggests that the origin of the cratons is similar to crustal plateaus observed on Venus, which may have been created by large asteroid impacts.[20] In this model, large impacts on the Earth's early lithosphere penetrated deep into the mantle and created enormous lava ponds.[20] The paper suggests these lava ponds cooled to form the craton's root.[20]

Evidence for each model

The chemistry of xenoliths[27] and seismic tomography both favor the two accretional models over the plume model.[29][31] However, other geochemical evidence favors mantle plumes.[32][33][34] Tomography shows two layers in the craton roots beneath North America. One is found at depths shallower than 150 km (93 mi) and may be Archean, while the second is found at depths from 180 to 240 km (110 to 150 mi) and may be younger. The second layer may be a less depleted thermal boundary layer that stagnated against the depleted "lid" formed by the first layer.[35] The impact origin model does not require plumes or accretion; this model is, however, not incompatible with either.[20]

All these proposed mechanisms rely on buoyant, viscous material separating from a denser residue due to mantle flow, and it is possible that more than one mechanism contributed to craton root formation.[30][20]

Erosion

The long-term erosion of cratons has been labelled the "cratonic regime". It involves processes of pediplanation and etchplanation that lead to the formation of flattish surfaces known as peneplains.[36] While the process of etchplanation is associated to humid climate and pediplanation with arid and semi-arid climate, shifting climate over geological time leads to the formation of so-called polygenetic peneplains of mixed origin. Another result of the longevity of cratons is that they may alternate between periods of high and low relative sea levels. High relative sea level leads to increased oceanicity, while the opposite leads to increased inland conditions.[36]

Many cratons have had subdued topographies since Precambrian times. For example, the Yilgarn Craton of Western Australia was flattish already by Middle Proterozoic times[36] and the Baltic Shield had been eroded into a subdued terrain already during the Late Mesoproterozoic when the rapakivi granites intruded.[37][38]

See also

References

  1. ^ "Definition of craton in North American English". Oxford Dictionaries. Archived from the original on 2015-04-02. Retrieved 2015-03-28.
  2. ^ "Definition of craton in British and Commonwealth English". Oxford Dictionaries. Archived from the original on 2015-04-02. Retrieved 2015-03-28.
  3. ^ Macquarie Dictionary (5th ed.). Sydney: Macquarie Dictionary Publishers Pty Ltd. 2009.
  4. ^ Jackson, Julia A., ed. (1997). "craton". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
  5. ^ Jackson 1997, "shield [tect]".
  6. ^ Jackson 1997, "platform [tect]".
  7. ^ Şengör, A.M.C. (2003). The Large-wavelength Deformations of the Lithosphere: Materials for a history of the evolution of though from the earliest times toi plate tectonics. Geological Society of America memoir. Vol. 196. p. 331.
  8. ^ Ratheesh-Kumar, R.T.; Windley, B.F.; Xiao, W.J.; Jia, X-L.; Mohanty, D.P.; Zeba-Nezrin, F.K. (October 2019). "Early growth of the Indian lithosphere: implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India". Precambrian Research. 336: 105491. doi:10.1016/j.precamres.2019.105491. S2CID 210295037.
  9. ^ Kusky, T. M.; Windley, B. F.; Zhai, M.-G. (2007). "Tectonic evolution of the North China Block: from orogen to craton to orogen". Geological Society, London, Special Publications. 280 (1): 1–34. Bibcode:2007GSLSP.280....1K. doi:10.1144/sp280.1. S2CID 129902429.
  10. ^ Artemieva, Irina M (August 2003). "Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform" (PDF). Earth and Planetary Science Letters. 213 (3–4): 431–446. Bibcode:2003E&PSL.213..431A. doi:10.1016/S0012-821X(03)00327-3.
  11. ^ Cordani, U.G.; Teixeira, W.; D'Agrella-Filho, M.S.; Trindade, R.I. (June 2009). "The position of the Amazonian Craton in supercontinents". Gondwana Research. 15 (3–4): 396–407. Bibcode:2009GondR..15..396C. doi:10.1016/j.gr.2008.12.005.
  12. ^ Nguuri, T. K.; Gore, J.; James, D. E.; Webb, S. J.; Wright, C.; Zengeni, T. G.; Gwavava, O.; Snoke, J. A. (1 July 2001). "Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons". Geophysical Research Letters. 28 (13): 2501–2504. doi:10.1029/2000GL012587. hdl:10919/24271. S2CID 15687067.
  13. ^ Hoffman, P F (May 1988). "United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia". Annual Review of Earth and Planetary Sciences. 16 (1): 543–603. Bibcode:1988AREPS..16..543H. doi:10.1146/annurev.ea.16.050188.002551.
  14. ^ Hand, M.; Reid, A.; Jagodzinski, L. (1 December 2007). "Tectonic Framework and Evolution of the Gawler Craton, Southern Australia". Economic Geology. 102 (8): 1377–1395. Bibcode:2007EcGeo.102.1377H. doi:10.2113/gsecongeo.102.8.1377.
  15. ^ Petit, Charles (18 December 2010). "Continental Hearts – Science News". Science News. 178 (13). Society for Science & the Public: 24. doi:10.1002/scin.5591781325. ISSN 0036-8423.
  16. ^ Kearey, P.; Klepeis, K.A.; Vine, F.J. (2009). Global tectonics (3rd ed.). Oxford: Wiley-Blackwell. p. 349. ISBN 9781405107778.
  17. ^ a b c d Petit 2010, p. 25.
  18. ^ a b c Petit 2010, pp. 25–26.
  19. ^ Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 373, 602–603. ISBN 9780521880060.
  20. ^ a b c d e f g Hansen, Vicki L. (24 August 2015). "Impact origin of Archean cratons". Lithosphere. 7 (5): 563–578. Bibcode:2015Lsphe...7..563H. doi:10.1130/L371.1.
  21. ^ Stanley, Steven M. (1999). Earth System History. New York: W.H. Freeman and Company. pp. 297–302. ISBN 0-7167-2882-6.
  22. ^ a b Lee, C. (2006). Benn, K.; Mareschal, J.C.; Condie, K.C. (eds.). "Geochemical/petrologic constraints on the origin of cratonic mantle" (PDF). American Geophysical Union Geophysical Monograph. Geophysical Monograph Series. 164: 89. Bibcode:2006GMS...164...89L. doi:10.1029/164GM08. ISBN 978-0-87590-429-0. Retrieved 20 November 2021.
  23. ^ a b Miller, Meghan S.; Eaton, David W. (September 2010). "Formation of cratonic mantle keels by arc accretion: Evidence from S receiver functions: FORMATION OF CRATONIC MANTLE KEELS". Geophysical Research Letters. 37 (18): n/a. doi:10.1029/2010GL044366. S2CID 129901730.
  24. ^ Jordan, Thomas H. (August 1978). "Composition and development of the continental tectosphere". Nature. 274 (5671): 544–548. Bibcode:1978Natur.274..544J. doi:10.1038/274544a0. S2CID 4286280.
  25. ^ Jordan 1978, p. 546.
  26. ^ a b c Jordan 1978, p. 547.
  27. ^ a b Lee 2006.
  28. ^ Jordan 1978, p. 544.
  29. ^ a b c d Petit 2010, p. 26.
  30. ^ a b c Kearey, Klepeis & Vine 2009, p. 351.
  31. ^ Miller & Eaton 2010.
  32. ^ Tomlinson, Kirsty Y.; Condie, Kent C. (2001). "Archean mantle plumes: Evidence from greenstone belt geochemistry". Mantle Plumes: Their Identification Through Time. doi:10.1130/0-8137-2352-3.341. ISBN 9780813723525. Retrieved 21 November 2021.
  33. ^ Ernst, Richard E.; Buchan, Kenneth L.; Campbell, Ian H. (February 2005). "Frontiers in large igneous province research". Lithos. 79 (3–4): 271–297. Bibcode:2005Litho..79..271E. doi:10.1016/j.lithos.2004.09.004.
  34. ^ Kearey, Klepeis & Vine 2009, p. 352.
  35. ^ Yuan, Huaiyu; Romanowicz, Barbara (August 2010). "Lithospheric layering in the North American craton". Nature. 466 (7310): 1063–1068. Bibcode:2010Natur.466.1063Y. doi:10.1038/nature09332. PMID 20740006. S2CID 4380594.
  36. ^ a b c Fairbridge, Rhodes W.; Finkl Jr., Charles W. (1980). "Cratonic erosion unconformities and peneplains". The Journal of Geology. 88 (1): 69–86. Bibcode:1980JG.....88...69F. doi:10.1086/628474. S2CID 129231129.
  37. ^ Lindberg, Johan (April 4, 2016). "berggrund och ytformer". Uppslagsverket Finland (in Swedish). Archived from the original on January 6, 2018. Retrieved February 13, 2018.
  38. ^ Lundmark, Anders Mattias; Lamminen, Jarkko (2016). "The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia". Precambrian Research. 275: 197–208. Bibcode:2016PreR..275..197L. doi:10.1016/j.precamres.2016.01.003.

Further reading

External links

Read more information:

Piala Negara-Negara Afrika 1996Logo Piala Negara-Negara Afrika 1996Informasi turnamenTuan rumah Afrika SelatanJadwalpenyelenggaraan13 Januari s.d. 3 Februari 1996Jumlahtim peserta15 (dari 1 konfederasi)Tempatpenyelenggaraan4 (di 4 kota)Hasil turnamenJuara Afrika Selatan (gelar ke-1)Tempat kedua TunisiaTempat ketiga ZambiaTempat keempat GhanaStatistik turnamenJumlahpertandingan29Jumlah gol78 (2,69 per pertandingan)Jumlahpenonton640.880 (22.099 per pert…

FlakyTokoh Happy Tree FriendsPenampilanperdanaWater You Wading ForPemeranNica LorberInformasiSpesiesLandakJenis kelaminBetina Flaky adalah karakter fiksi pada serial kartun Happy Tree Friends. Ia adalah landak merah yang merupakan salah satu karakter paling populer dengan sifat sangat pemalu. Ia sering terlihat sebagai penakut. Ketika ia bersama Cuddles, Flaky sering menyebabkan situasi yang buruk untuk mereka. Flaky bukan karakter yang senang menolong. Pada episode Party Animal, ditemukan ia al…

Untuk bayi terlantar yang ditemukan selama banjir di Dordrecht, lihat Beatrix de Rijke. Beatrix de Rijk Beatrix de Rijk (24 Juli 1883 – 18 Januari 1958) adalah wanita Belanda pertama yang menjadi pilot. De Rijk besar di Hindia Belanda (sekarang Indonesia). Pada suatu waktu ia tinggal di Parijs dan mendapat pendidikan dirgantara dekat Hanriot di Betheny. Pada tanggal 6 Oktober 1911, ia mendapatkan sertifikat pilot nomor 652 dari Aéro-Club de France. De Rijk berasal dari keluarga …

Archidice Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Archidice Archidice adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Referensi TITAN: Cerambyc…

Anton AlikhanovАнтон Алиханов Gubernur Oblast Kaliningrad ke-6PetahanaMulai menjabat 29 September 2017PresidenVladimir Putin PendahuluNikolay Tsukanov Yevgeny Zinichev (pemangku jabatan)PenggantiPetahanaWakil Ketua Pemerintah Oblast KaliningradMasa jabatan22 September 2015 – 30 Juli 2016 Informasi pribadiLahirAnton Andreyevich Alikhanov17 September 1986 (umur 37)Sukhum, Abkhaz ASSR, Uni Soviet (sekarang Georgia)Partai politikRusia BersatuSuami/istriDaria Abramova…

Hari Sastra GalisiaPada 2018Nama resmiDía das Letras GalegasDirayakan olehGalisia, SpanyolJenisBudayaTanggalMei 17Frekuensitahunan Hari Sastra Galisia (bahasa Galisia: Día das Letras Galegas) adalah hari libur umum yang dirayakan di Galisia, Spanyol. Ini adalah perayaan bahasa Galisia dan kesusastraannya yang diresmikan oleh Akademi Kerajaan Galisia (Real Academia Galega) pada tahun 1963. Perayaan ini berlangsung pada tanggal 17 Mei setiap tahun sejak 1963.[1] Pada tahun 1991 Hari …

Botana belang kuning Acanthurus xanthopterus Status konservasiRisiko rendahIUCN177989 TaksonomiKerajaanAnimaliaFilumChordataKelasActinopteriOrdoPerciformesFamiliAcanthuridaeGenusAcanthurusSpesiesAcanthurus xanthopterus Valenciennes, 1835 lbs Botana belang kuning ( Acanthurus xanthopterus ) adalah salah satu dari beberapa ikan laut yang berubah warna seiring bertambahnya usia. Karakteristik ikan ini membingungkan identifikasi, dan awalnya menempatkan ikan muda dan dewasa dalam spesies yang berbed…

Overview of the foreign relations of Haiti Politics of Haiti Constitution Constitutional Court Law Legislature (not functioning) Haitian Parliament Chamber of Deputies Senate Executive President of Haiti (list) Vacant (executive directed by PM and Cabinet) Prime Minister of Haiti (list) Ariel Henry (acting) Cabinet Judiciary Supreme Court of Haiti Recent elections General: 20062010–11Next Presidential: 20152016 (Feb)2016 (Nov) Parliamentary: 2015–16 Senate: 2016–17 Electoral body: CEP Admi…

Göbekli Tepe Girê Mirazan Xirabreşkê Lokasi di TurkeyTampilkan peta TurkeyGöbekli Tepe (Near East)Tampilkan peta Near EastLokasiProvinsi Şanlıurfa, TurkiWilayahAnatolia TenggaraKoordinat37°13′23″N 38°55′21″E / 37.22306°N 38.92250°E / 37.22306; 38.92250Koordinat: 37°13′23″N 38°55′21″E / 37.22306°N 38.92250°E / 37.22306; 38.92250SejarahDidirikanc. 9500 BCE[1]Ditinggalkanc. 8000 BCE[1]Periode Neolitikum P…

Dutch footballer (born 1962) Foeke Booy Personal informationDate of birth (1962-04-25) 25 April 1962 (age 61)Place of birth Leeuwarden, NetherlandsPosition(s) ForwardTeam informationCurrent team Cambuur(technical manager)Senior career*Years Team Apps (Gls)1980–1984 Cambuur 72 (8)1984–1985 De Graafschap 34 (20)1985–1987 PEC Zwolle 77 (37)1987–1988 FC Groningen 29 (10)1988–1989 Kortrijk 31 (8)1989–1993 Club Brugge 111 (49)1993–1994 AA Gent 28 (11)1994–1996 FC Utrecht 26 (4)Tot…

Paus Pius XI (1857–1939) Selama enam belas tahun, Paus Pius XI (m. 1922–1939) mengangkat 76 kardinal dalam 17 konsistori. Meskipun ia mengangkat 18 kardinal di konsistori tahun 1935, ia biasanya mengangkat kardinal dalam jumlah yang sangat sedikit pada konsistori. Ia mengadakan konsistori pada 1929 hanya untuk mengangkat satu kardinal, dan hanya mengangkat dua kardinal pada delapan konsistori. Deri pengangkatannya untuk Dewan Kardinal, 43 kardinal adalah orang Italia.[1] Ia tamp…

Chronologies Photographie des remparts d'Avignon lors de l'inondation de 1856 par Édouard Baldus.Données clés 1853 1854 1855  1856  1857 1858 1859Décennies :1820 1830 1840  1850  1860 1870 1880Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, Républi…

العلاقات الدنماركية الليتوانية الدنمارك ليتوانيا   الدنمارك   ليتوانيا تعديل مصدري - تعديل   العلاقات الدنماركية الليتوانية هي العلاقات الثنائية التي تجمع بين الدنمارك وليتوانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولت…

Cet article ou cette section contient des informations sur une compétition de football en cours. Le texte peut changer à mesure que l'événement progresse, ne pas être à jour ou manquer de recul. N’hésitez pas à participer en citant vos sources.La dernière modification de cette page a été faite le 8 avril 2024 à 20:28. Wikipédia est une encyclopédie, pas un site de scores en direct. Même si cette page concerne un ou plusieurs matchs en cours, merci d'attendre la fin des matchs po…

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ранне…

1920 declaration of rebellion against Mexican president Venustiano Carranza Adolfo de la Huerta President Venustiano Carranza Plutarco Elías Calles Alvaro Obregón In the history of Mexico, the Plan of Agua Prieta (Spanish: Plan de Agua Prieta) was a manifesto, or plan, that articulated the reasons for rebellion against the government of Venustiano Carranza. Three revolutionary generals from Sonora, Álvaro Obregón, Plutarco Elías Calles, and Adolfo de la Huerta, often called the Sonoran Triu…

1923 film Men in the RawAdvertisementDirected byGeorge MarshallScreenplay byGeorge HivelyBased onMen in the Rawby W. Bert FosterStarringJack HoxieMarguerite ClaytonSid JordanJ. Morris FosterTom KerrickWilliam LoweryCinematographyHarry M. FowlerRay RamseyProductioncompanyUniversal PicturesDistributed byUniversal PicturesRelease date October 16, 1923 (1923-10-16) Running time50 minutesCountryUnited StatesLanguageSilent (English intertitles) Men in the Raw is a 1923 American silent W…

1956 film by Norman Taurog For other uses of the Birds and the Bees, see The Birds and the Bees (disambiguation). The Birds and the BeesDirected byNorman TaurogScreenplay bySidney SheldonNorman TaurogStory bySidney SheldonProduced byPaul JonesStarringGeorge GobelMitzi GaynorDavid NivenCinematographyDaniel L. FappEdited byArchie MarshekMusic byWalter ScharfProductioncompanyGomalco ProductionsDistributed byParamount PicturesRelease date March 20, 1956 (1956-03-20) Running time94 min…

2019 video game For the cross-platform video game, see Olympic Games Tokyo 2020 - The Official Video Game. 2019 video gameMario & Sonic at the Olympic Games Tokyo 2020Cover art, depicting Mario and Sonic at the Japan National StadiumDeveloper(s)Sega[a]Publisher(s)SegaDirector(s)Naohiro HiraoProducer(s)Nobuya OhashiDesigner(s)Shingo KawakamiTakao HirabayashiMariko KawaseProgrammer(s)Mitsuru TakahashiArtist(s)Hiroshi KanazawaComposer(s)Kenichi TokoiTomoya OhtaniMitsuharu FukuyamaSatosh…

American film director Alfred J. GouldingGoulding circa 1905BornAlfred John Goulding(1885-01-26)January 26, 1885Melbourne, AustraliaDiedApril 25, 1972(1972-04-25) (aged 87)Hollywood, California, USAOccupation(s)Film directorScreenwriterYears active1917–1959Spouses Gladys Watson ​ ​(m. 1911; died 1920)​ Hazel Marcella O'Brien ​ ​(m. 1920; div. 1925)​ Audrey F. Faught ​ ​(…

Kembali kehalaman sebelumnya