The Frucht graph is one of the five smallest cubic graphs without any symmetries:[3] it possesses only a single graph automorphism, the identity automorphism.[4]
Coloring and independent sets
According to Brooks' theorem every connected cubic graph other than the complete graphK4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
According to Vizing's theorem every cubic graph needs either three or four colors for an edge coloring. A 3-edge-coloring is known as a Tait coloring, and forms a partition of the edges of the graph into three perfect matchings. By Kőnig's line coloring theorem every bicubic graph has a Tait coloring.
Cubic graphs arise naturally in topology in several ways. For example, the cubic graphs with 2g-2 vertices describe the different ways of cutting a surface of genus g ≥ 2 into pairs of pants. If one considers a graph to be a 1-dimensional CW complex, cubic graphs are generic in that most 1-cell attaching maps are disjoint from the 0-skeleton of the graph. Cubic graphs are also formed as the graphs of simple polyhedra in three dimensions, polyhedra such as the regular dodecahedron with the property that three faces meet at every vertex.
An arbitrary graph embedding on a two-dimensional surface may be represented as a cubic graph structure known as a graph-encoded map. In this structure, each vertex of a cubic graph represents a flag of the embedding, a mutually incident triple of a vertex, edge, and face of the surface. The three neighbors of each flag are the three flags that may be obtained from it by changing one of the members of this mutually incident triple and leaving the other two members unchanged.[6]
If a cubic graph is chosen uniformly at random among all n-vertex cubic graphs, then it is very likely to be Hamiltonian: the proportion of the n-vertex cubic graphs that are Hamiltonian tends to one in the limit as n goes to infinity.[10]
David Eppstein conjectured that every n-vertex cubic graph has at most 2n/3 (approximately 1.260n) distinct Hamiltonian cycles, and provided examples of cubic graphs with that many cycles.[11] The best proven estimate for the number of distinct Hamiltonian cycles is .[12]
Other properties
Unsolved problem in mathematics:
What is the largest possible pathwidth of an -vertex cubic graph?
The pathwidth of any n-vertex cubic graph is at most n/6. The best known lower bound on the pathwidth of cubic graphs is 0.082n. It is not known how to reduce this gap between this lower bound and the n/6 upper bound.[13]
It follows from the handshaking lemma, proven by Leonhard Euler in 1736 as part of the first paper on graph theory, that every cubic graph has an even number of vertices.
Petersen's theorem states that every cubic bridgeless graph has a perfect matching.[14]Lovász and Plummer conjectured that every cubic bridgeless graph has an exponential number of perfect matchings. The conjecture was recently proved, showing that every cubic bridgeless graph with n vertices has at least 2n/3656 perfect matchings.[15]
^Bussemaker, F. C.; Cobeljic, S.; Cvetkovic, D. M.; Seidel, J. J. (1976), Computer investigation of cubic graphs, EUT report, vol. 76-WSK-01, Dept. of Mathematics and Computing Science, Eindhoven University of Technology
^Robinson, R.W.; Wormald, N.C. (1994), "Almost all regular graphs are Hamiltonian", Random Structures and Algorithms, 5 (2): 363–374, doi:10.1002/rsa.3240050209.
^Xiao, Mingyu; Nagamochi, Hiroshi (2013), "An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure", Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 7876, Springer-Verlag, pp. 96–107, arXiv:1212.6831, doi:10.1007/978-3-642-38236-9_10, ISBN978-3-642-38236-9.