DNA (cytosine-5)-methyltransferase 1(Dnmt1) is an enzyme that catalyzes the transfer of methyl groups to specific CpG sites in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1gene.[5] Dnmt1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.
Function
This enzyme is responsible for maintaining DNA methylation, which ensures the fidelity of this epigenetic patterns across cell divisions. In line with this role, it has a strong preference towards methylating CpGs on hemimethylated DNA.[6] However, DNMT1 can catalyze de novo DNA methylation in specific genomic contexts, including transposable elements and paternal imprint control regions.[7][8] Aberrant methylation patterns are associated with certain human tumors and developmental abnormalities.[9][10]
DNMT1 is highly transcribed during the S phase of the cell cycle when it is required for methylation of the newly generated hemimethylated sites on daughter DNA strands.[18] Its interaction with PCNA and UHRF1 has been implicated in localizing it to the replication fork.[19] The direct co-operation between DNMT1 and G9a coordinates DNA and H3K9 methylation during cell division.[17] This chromatin methylation is necessary for stable repression of gene expression during mammalian development.
Model organisms
Knockout experiments have shown that this enzyme is responsible for the bulk of methylation in mouse cells, and it is essential for embryonic development.[20] It has also been shown that a lack of both maternal and zygotic Dnmt1 results in complete demethylation of imprinted genes in blastocysts.[21]
Clinical significance
DNMT1 plays a critical role in Hematopoietic stem cell (HSC) maintenance. HSCs with reduced DNMT1 fail to self-renew efficiently post-transplantation.[22] It has also been shown to be critical for other stem cell types such as Intestinal stem cells (ISCs) and Mammary stem cells (MaSCs). Conditional deletion of DNMT1 results in overall intestinal hypomethylation, crypt expansion and altered differentiation timing of ISCs, and proliferation and maintenance of MaSCs.[23]
DNMT1 plays a crucial role in maintaining DNA methylation patterns, which are vital for regulating gene expression and maintaining cellular identity in cancer.[24] Dysregulation of DNMT1 can lead to abnormal methylation patterns, contributing to oncogene activation or tumor suppressor gene silencing, thereby promoting cancer progression and metastasis.
Given the role of DNMT1 in maintaining DNA methylation patterns crucial for gene regulation in cancer, the inhibition of DNMT1 by brazilin, a compound from Caesalpinia sappan, is significant. By reducing DNMT1 expression and altering methylation states through activation of p38 MAPK and elevation of p53 in MCF-7 breast cancer cells, brazilin leads to the restoration of p21 expression.[25] This mechanism highlights brazilin's potential as a therapeutic agent to correct epigenetic alterations associated with cancer progression and metastasis.
^ abcRountree MR, Bachman KE, Baylin SB (July 2000). "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci". Nature Genetics. 25 (3): 269–77. doi:10.1038/77023. PMID10888872. S2CID26149386.
^Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (September 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". Science. 277 (5334): 1996–2000. doi:10.1126/science.277.5334.1996. PMID9302295.
^Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (July 2000). "DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters". Nature Genetics. 25 (3): 338–42. doi:10.1038/77124. PMID10888886. S2CID10983932.
Bestor T, Laudano A, Mattaliano R, Ingram V (October 1988). "Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases". Journal of Molecular Biology. 203 (4): 971–83. doi:10.1016/0022-2836(88)90122-2. PMID3210246.
Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (September 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". Science. 277 (5334): 1996–2000. doi:10.1126/science.277.5334.1996. PMID9302295.
Kho MR, Baker DJ, Laayoun A, Smith SS (January 1998). "Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation". Journal of Molecular Biology. 275 (1): 67–79. doi:10.1006/jmbi.1997.1430. PMID9451440.
Rountree MR, Bachman KE, Baylin SB (July 2000). "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci". Nature Genetics. 25 (3): 269–77. doi:10.1038/77023. PMID10888872. S2CID26149386.
Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (July 2000). "DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters". Nature Genetics. 25 (3): 338–42. doi:10.1038/77124. PMID10888886. S2CID10983932.
Fatemi M, Hermann A, Pradhan S, Jeltsch A (June 2001). "The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA". Journal of Molecular Biology. 309 (5): 1189–99. doi:10.1006/jmbi.2001.4709. PMID11399088.
Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (February 2002). "Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor". Science. 295 (5557): 1079–82. Bibcode:2002Sci...295.1079D. doi:10.1126/science.1065173. hdl:11576/2506625. PMID11834837. S2CID29532358.
Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (April 2002). "DNMT1 and DNMT3b cooperate to silence genes in human cancer cells". Nature. 416 (6880): 552–6. Bibcode:2002Natur.416..552R. doi:10.1038/416552a. PMID11932749. S2CID4397868.
Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB, Schuebel KE (January 2006). "De novo CpG island methylation in human cancer cells". Cancer Research. 66 (2): 682–92. doi:10.1158/0008-5472.CAN-05-1980. PMID16423997.
Ting AH, Jair KW, Schuebel KE, Baylin SB (January 2006). "Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation". Cancer Research. 66 (2): 729–35. doi:10.1158/0008-5472.CAN-05-1537. PMID16424002.
Bestor T, Laudano A, Mattaliano R, Ingram V (October 1988). "Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases". Journal of Molecular Biology. 203 (4): 971–83. doi:10.1016/0022-2836(88)90122-2. PMID3210246.