The contrapositive tells us that if K is not an unknot, i.e. K is not isotopic to the circle, then the total curvature will be strictly greater than 4π. Notice that having the total curvature less than or equal to 4π is merely a sufficient condition for K to be an unknot; it is not a necessary condition. In other words, although all knots with total curvature less than or equal to 4π are the unknot, there exist unknots with curvature strictly greater than 4π.
Generalizations to non-smooth curves
For closed polygonal chains the same result holds with the integral of curvature replaced by the sum of angles between adjacent segments of the chain. By approximating arbitrary curves by polygonal chains, one may extend the definition of total curvature to larger classes of curves, within which the Fáry–Milnor theorem also holds (Milnor 1950, Sullivan 2008).
References
Denne, Elizabeth Jane (2004), Alternating quadrisecants of knots, Ph.D. thesis, University of Illinois at Urbana-Champaign, arXiv:math/0510561, Bibcode:2005math.....10561D.
Fenner, Stephen A. (1990), The total curvature of a knot (long). Fenner describes a geometric proof of the theorem, and of the related theorem that any smooth closed curve has total curvature at least 2π.