Share to: share facebook share twitter share wa share telegram print page

 

Géraud Sénizergues

Géraud Sénizergues
Sénizergues in September 2017
Born (1957-03-09) 9 March 1957 (age 67)
NationalityFrench
Awards
Scientific career
FieldsComputer science
InstitutionsUniversity of Bordeaux
Websitedept-info.labri.u-bordeaux.fr/~ges/

Géraud Sénizergues (born 9 March 1957) is a French computer scientist at the University of Bordeaux.

He is known for his contributions to automata theory, combinatorial group theory and abstract rewriting systems.[1]

He received his Ph.D. (Doctorat d'état en Informatique) from the Université Paris Diderot (Paris 7) in 1987 under the direction of Jean-Michel Autebert.[2]

With Yuri Matiyasevich he obtained results about the Post correspondence problem.[3] He won the 2002 Gödel Prize "for proving that equivalence of deterministic pushdown automata is decidable".[4][5][6] In 2003 he was awarded with the Gay-Lussac Humboldt Prize.

References

  1. ^ "DBLP Geraud Senizergues".
  2. ^ "Mathematical Genealogy Project, Geraud Senizergues".
  3. ^ Matiyasevich, Y.; Senizergues, G. (1996). "Decision problems for semi-Thue systems with a few rules". Proceedings 11th Annual IEEE Symposium on Logic in Computer Science. New Brunswick, NJ, USA: IEEE Comput. Soc. Press. pp. 523–531. doi:10.1109/LICS.1996.561469. ISBN 9780818674631. S2CID 14296200.
  4. ^ "2002 Gödel Prize". sigact.org. Retrieved 2019-05-10.
  5. ^ Sénizergues, Géraud (1997). Degano, Pierpaolo; Gorrieri, Roberto; Marchetti-Spaccamela, Alberto (eds.). "The equivalence problem for deterministic pushdown automata is decidable". Automata, Languages and Programming. Lecture Notes in Computer Science. 1256. Springer Berlin Heidelberg: 671–681. doi:10.1007/3-540-63165-8_221. ISBN 9783540691945.
  6. ^ Sénizergues, Géraud (2001). "L(A)=L(B)? decidability results from complete formal systems". Theoretical Computer Science. 251 (1–2): 1–166. doi:10.1016/S0304-3975(00)00285-1.


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya