Share to: share facebook share twitter share wa share telegram print page

Gabor–Wigner transform

The Gabor transform, named after Dennis Gabor, and the Wigner distribution function, named after Eugene Wigner, are both tools for time-frequency analysis. Since the Gabor transform does not have high clarity, and the Wigner distribution function has a "cross term problem" (i.e. is non-linear), a 2007 study by S. C. Pei and J. J. Ding proposed a new combination of the two transforms that has high clarity and no cross term problem.[1] Since the cross term does not appear in the Gabor transform, the time frequency distribution of the Gabor transform can be used as a filter to filter out the cross term in the output of the Wigner distribution function.

Mathematical definition

  • Gabor transform
  • Wigner distribution function
  • Gabor–Wigner transform
There are many different combinations to define the Gabor–Wigner transform. Here four different definitions are given.

Character

  1. Cross Term Problem:
    The definition of Wigner distribution function (WDF) is
    is the input signal, the time axis after transform, is the frequency axis after transform.
    If we design our input signal as : , and its WDF presents as below:
    and are called "auto-term", and other components are "cross-term", which is not the correct information from the original signal.
    The Gabor Transform (GT) can avoid the cross-term problem, while the Wigner-distribution function (WDF) has high clarity. By combining the two, the Gabor-Wigner Transform (GWT) achieves both high clarity and the ability to avoid the cross-term problem. Example are shown in the picture below.
    時頻分析2
  2. Rotation relation:
    The GWT has rotation relation with the FRFT, making it useful for filter design, sampling, and multiplexing in the FRFT domain.

Application

The Gabor–Wigner transform performs well in image processing, filter design, signal sampling, modulation, demodulation, speech processing, and biomedical engineering.

Filter Design

The goal of filter design is to remove unwanted portions of the signal while preserving the necessary parts. By using the Gabor–Wigner transform, we can simultaneously consider filters in both the time domain and frequency domain, representing a form of time-frequency analysis. The main concept is illustrated as follows.

Filter fractional

Signal Modulation

The purpose of modulation is to place a signal within a specific time or frequency range. Using the Gabor–Wigner transform, we can simultaneously consider how to introduce more or more suitable signal patterns in both the time and frequency domains. Due to the absence of cross-term issues, it performs better than the Wigner transform.

Mul mod

From the figure (WDF) above, it can also be observed that when using the Wigner transform (WDF), the generated cross-terms have a severe impact on modulation.

Technique for fast implementation of the Gabor-Wigner Transform

  1. Due to the lower complexity of the Gabor transform compared to the Wigner transform, the Gabor transform is usually prioritized for calculation. When calculating the Wigner transform, it is only necessary to compute the Gabor transform in non-zero regions, as the values in other regions approach zero. Mathematically, this can be expressed as
  2. When is a real function, for the Gabor transform, . This allows for a significant reduction in the required memory area when designing memory.

Comparison

Time-frequency analysis Advantages Disadvantages Complexity
Gabor transform without cross-term lower clarity Low
Wigner-distribution function higher clarity with cross-term Medium
Gabor–Wigner transform high clarity and without cross-term high computational load High

See also

References

  1. ^ S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 4839–4850, Oct. 2007.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya