Share to: share facebook share twitter share wa share telegram print page

Geographic coordinate system

Longitude lines are perpendicular to and latitude lines are parallel to the Equator

A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude.[1] It is the simplest, oldest and most widely used type of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.[2]

A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid), as different datums will yield different latitude and longitude values for the same location.[3]

History

The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his now-lost Geography at the Library of Alexandria in the 3rd century BC.[4] A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses, rather than dead reckoning. In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles, off the coast of western Africa around the Canary or Cape Verde Islands, and measured north or south of the island of Rhodes off Asia Minor. Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day.[5]

Ptolemy's 2nd-century Geography used the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea,[note 1] causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407.

In 1884, the United States hosted the International Meridian Conference, attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich, England as the zero-reference line. The Dominican Republic voted against the motion, while France and Brazil abstained.[6] France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911.

Latitude and longitude

Diagram of the latitude ϕ and longitude λ angle measurements for a spherical model of the Earth.

The latitude φ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth.[note 2] Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator, the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres.

The longitude λ of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich, in southeast London, England, is the international prime meridian, although some organizations—such as the French Institut national de l'information géographique et forestière—continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line, which diverges from it in several places for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands.

The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a graticule.[7] The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana, a location often facetiously called Null Island.

Geodetic datum

In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of the shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points, surveyed locations at which monuments are installed, and were only accurate for a region of the surface of the Earth. Newer datums are based on a global network for satellite measurements (GNSS, VLBI, SLR and DORIS).

This combination of mathematical model and physical binding mean that anyone using the same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because the location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on a WGS84 realisation will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient.[8]

Datums may be global, meaning that they represent the whole Earth, or they may be regional,[9] meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include the several epochs of WGS 84 (with the 2D datum ensemble EPSG:4326 with 2 meter accuracy as identifier)[10][11] used for the Global Positioning System,[note 3] and the several realizations of the International Terrestrial Reference System and Frame (such as ITRF2020 with subcentimeter accuracy), which takes into account continental drift and crustal deformation.[12]

Datums with a regional fit of the ellipsoid that are chosen by a national cartographical organization include the North American Datums, the European ED50, and the British OSGB36. Given a location, the datum provides the latitude and longitude . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from the one used on published maps OSGB36 by approximately 112 m. ED50 differs from about 120 m to 180 m.[13]

Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm a year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm. Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age, but neighboring Scotland is rising by only 0.2 cm. These changes are insignificant if a regional datum is used, but are statistically significant if a global datum is used.[13]

Length of a degree

On the GRS 80 or WGS 84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 m, one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and a longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m.

On the WGS 84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ), is about

[14]

The returned measure of meters per degree latitude varies continuously with latitude.

Similarly, the length in meters of a degree of longitude can be calculated as

[14]

(Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.)

The formulae both return units of meters per degree.

An alternative method to estimate the length of a longitudinal degree at latitude is to assume a spherical Earth (to get the width per minute and second, divide by 60 and 3600, respectively):

where Earth's average meridional radius is 6,367,449 m. Since the Earth is an oblate spheroid, not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude is

where Earth's equatorial radius equals 6,378,137 m and ; for the GRS 80 and WGS 84 spheroids, . ( is known as the reduced (or parametric) latitude). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart.

Longitudinal length equivalents at selected latitudes
Latitude City Degree Minute Second 0.0001°
60° Saint Petersburg 55.80 km 0.930 km 15.50 m 5.58 m
51° 28′ 38″ N Greenwich 69.47 km 1.158 km 19.30 m 6.95 m
45° Bordeaux 78.85 km 1.31 km 21.90 m 7.89 m
30° New Orleans 96.49 km 1.61 km 26.80 m 9.65 m
Quito 111.3 km 1.855 km 30.92 m 11.13 m

Alternate encodings

Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words:

These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements.

See also

Notes

  1. ^ The pair had accurate absolute distances within the Mediterranean but underestimated the circumference of the Earth, causing their degree measurements to overstate its length west from Rhodes or Alexandria, respectively.
  2. ^ Alternative versions of latitude and longitude include geocentric coordinates, which measure with respect to Earth's center; geodetic coordinates, which model Earth as an ellipsoid; and geographic coordinates, which measure with respect to a plumb line at the location for which coordinates are given.
  3. ^ WGS 84 is the default datum used in most GPS equipment, but other datums and map projections can be selected.

References

  1. ^ Chang, Kang-tsung (2016). Introduction to Geographic Information Systems (9th ed.). McGraw-Hill. p. 24. ISBN 978-1-259-92964-9.
  2. ^ DiBiase, David. "The Nature of Geographic Information". Archived from the original on 19 February 2024. Retrieved 18 February 2024.
  3. ^ "Using the EPSG geodetic parameter dataset, Guidance Note 7-1". EPSG Geodetic Parameter Dataset. Geomatic Solutions. Archived from the original on 15 December 2021. Retrieved 15 December 2021.
  4. ^ McPhail, Cameron (2011), Reconstructing Eratosthenes' Map of the World (PDF), Dunedin: University of Otago, pp. 20–24, archived (PDF) from the original on 2 April 2015, retrieved 14 March 2015.
  5. ^ Evans, James (1998), The History and Practice of Ancient Astronomy, Oxford, England: Oxford University Press, pp. 102–103, ISBN 9780199874453, archived from the original on 17 March 2023, retrieved 5 May 2020.
  6. ^ "The International Meridian Conference". Millennium Dome: The O2 in Greenwich. Greenwich 2000 Limited. 9 June 2011. Archived from the original on 6 August 2012. Retrieved 31 October 2012.
  7. ^ American Society of Civil Engineers (1 January 1994). Glossary of the Mapping Sciences. ASCE Publications. p. 224. ISBN 9780784475706.
  8. ^ "Making maps compatible with GPS". Government of Ireland 1999. Archived from the original on 21 July 2011. Retrieved 15 April 2008.
  9. ^ "A guide to the coordinate systems in Great Britain". Ordnance Survey.
  10. ^ "WGS 84: EPSG Projection -- Spatial Reference". spatialreference.org. Archived from the original on 13 May 2020. Retrieved 5 May 2020.
  11. ^ EPSG:4326
  12. ^ Bolstad, Paul (2012). GIS Fundamentals (PDF) (5th ed.). Atlas books. p. 102. ISBN 978-0-9717647-3-6. Archived from the original (PDF) on 15 October 2020. Retrieved 27 January 2018.
  13. ^ a b A guide to coordinate systems in Great Britain (PDF), D00659 v3.6, Ordnance Survey, 2020, archived (PDF) from the original on 2 April 2020, retrieved 17 December 2021
  14. ^ a b [1] Archived 29 June 2016 at the Wayback Machine Geographic Information Systems – Stackexchange

Sources

Read other articles:

Seorang penambang batu bara menyelesaikan tinjauan penyaringan untuk paru-paru hitam. Dalam kedokteran, penapisan atau penyaringan (Inggris: screeningcode: en is deprecated ) adalah cara yang digunakan untuk mencari keadaan atau penanda risiko yang belum diketahui.[1][2][3] Pengujian ini dapat diterapkan kepada individu atau seluruh populasi. Orang yang diuji mungkin tidak menunjukkan tanda atau gejala penyakit apa pun atau menunjukkan satu atau dua gejala yang dengan sen…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. GorgaMunisipalitasCarrer Major Lambang kebesaranGorgaLokasi di Provinsi AlicanteTampilkan peta Province of AlicanteGorgaGorga (Spanyol)Tampilkan peta SpanyolKoordinat: 38°43′05″N 0°21′26″W / 38.71806°N 0.35722°W / 38.7180…

Erica acuta Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Magnoliopsida Ordo: Ericales Famili: Ericaceae Genus: Erica Spesies: Erica acuta Nama binomial Erica acutaAndrews Erica acuta adalah spesies tumbuhan yang tergolong ke dalam famili Ericaceae. Spesies ini juga merupakan bagian dari ordo Ericales. Spesies Erica acuta sendiri merupakan bagian dari genus Erica.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh Andrews. Referensi ^ Erica Tourn. ex L. Plan…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Kunizo Mori (1890-1949) adalah seorang perwira Angkatan Laut Kekaisaran Jepang atau Kaigun yang bertugas di Makassar, Sulawesi Selatan saat Kekaisaran Jepang menduduki Hindia Belanda (sekarang Indonesia) selama Perang Dunia II.[1] Karier Kunizo M…

Voce principale: Unione Sportiva Sassuolo Calcio. US Sassuolo CalcioStagione 2013-2014Sport calcio Squadra Sassuolo Allenatore Eusebio Di Francesco (1ª-21ª) (27ª-38ª) Alberto Malesani (22ª-26ª) All. in seconda Ezio Sella Presidente Carlo Rossi Serie A17º Coppa ItaliaQuarto turno Maggiori presenzeCampionato: Pegolo, Zaza (33)[1]Totale: Zaza (35) Miglior marcatoreCampionato: Berardi (16)[1]Totale: Berardi (16) StadioStadio Alberto Braglia Abbonati7 795[2] M…

Halaman ini berisi artikel tentang the film. Untuk the original novel by Lois Duncan, lihat I Know What You Did Last Summer. I Know What You Did Last SummerSutradaraJim GillespieProduserWilliam S. BeasleyNeal H. MortizStokely ChaffinDitulis olehKevin WilliamsonPemeranJennifer Love HewittSarah Michelle GellarRyan PhillippeFreddie Prinze, Jr.Penata musikJohn DebneyDistributorColumbia PicturesMandalay PicturesTanggal rilis17 Oktober 1997Durasi100 menitNegara Amerika SerikatBahasaBahasa I…

У этого термина существуют и другие значения, см. Юань. Символы или знаки юаня — традиционные иероглифы (圓, 元) их упрощённые версии (圆, 円), слоги (원) и основанные на латинице графемы (¥, ₩, $), используемые для краткого обозначения юаня и других денежных единиц региона, чьи наз…

SMA Negeri 27 BandungInformasiDidirikan2006JenisSekolah NegeriKepala SekolahHadili M.PdJurusan atau peminatanIPA dan IPSRentang kelasX, XI,XII MIPA, , X, XI,XII IPSKurikulum2013StatusNegeriAlamatLokasiJalan Utsman Bin Affan No. 1 Kel. Rancanumpang Kec. Gedebage, Bandung, Jawa Barat,  IndonesiaTel./Faks.(022) 7838362Moto SMA Negeri 27 Bandung, merupakan salah satu Sekolah Menengah Atas Negeri yang ada di Bandung. SMA Negeri 27 Bandung beralamat di Jalan Utsman Bin Affan No. 1 Kel. Ranca…

Jermanofobia beralih ke halaman ini, yang bukan mengenai Jermofobia. Hancurkan monster gila ini—Propaganda Amerika Serikat (Harry R. Hopps; 1917). Poster ini dirilis tahun 1917 oleh Harry Ryle Hopps, menggambarkan Jerman sebagai gorila yang menyerang Amerika Serikat setelah menaklukkan Eropa.[1] Kartun anti-Jerman dari Australia, Norman Lindsay, antara tahun 1914 dan 1918 Poster anti-Jerman dari Britania, sekitar tahun 1919, menyerukan boikot terhadap barang-barang Jerman dan menggamba…

American punk rock band For other uses, see Husker Du (disambiguation). Hüsker DüHüsker Dü in 1986 Left to right: Greg Norton, Grant Hart, and Bob MouldBackground informationOriginSaint Paul, Minnesota, United StatesGenres Hardcore punk post-hardcore punk rock alternative rock Years active1979–1988Labels Reflex Records Alternative Tentacles New Alliance SST Warner Bros. Past members Grant Hart Bob Mould Greg Norton Hüsker Dü (/ˈhʊskər ˈduː/) was an American punk rock band formed in …

City in Ucayali, Peru This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) You can help expand this article with text translated from the corresponding article in Spanish. (August 2010) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations,…

Сирийский бурый медведь Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКлас…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Resolusi 1570Dewan Keamanan PBBSahara BaratTanggal28 Oktober 2004Sidang no.5.068KodeS/RES/1570 (Dokumen)TopikSituasi seputar Sahara BaratRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Aljazair Angola Benin Brasil Chili Spanyol Jerman Pakistan Filipina Rumania Resolusi 1570 De…

Niels VandeputteInformationsNaissance 19 septembre 2000 (23 ans)WestmalleNationalité belgeÉquipe actuelle Alpecin-Deceuninck Development TeamÉquipe non-UCI 2016-2018IKO Enertherm-BKCPÉquipes UCI 2019-7.2020Iko-Crelan8.2020-2020Alpecin-Fenix (stagiaire)2021-6.2022Alpecin-Fenix Development7.2022-Alpecin-Deceuninck Development Teammodifier - modifier le code - modifier Wikidata Niels Vandeputte, né le 19 septembre 2000 à Malle, est un coureur cycliste belge. Spécialiste du cyclo-cross, …

The 2nd Dragoons or 2nd Dragoon Regiment may refer to: 2nd Dragoons, a British regiment usually known as the Royal Scots Greys 2nd Dragoons (Canada), a Canadian regiment that amalgamated into the 2nd/10th Dragoons 2nd Dragoon Regiment (Denmark) 2nd Dragoon Regiment (France) 2nd Cavalry Regiment (United States), also known as the 2nd Dragoons See also 2nd Dragoon Guards (Queen's Bays) 2nd Regiment (disambiguation) Topics referred to by the same termThis disambiguation page lists articles about mi…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Lepat – berita · surat kabar · buku · cendekiawan · JSTOR Lepat adalah makanan khas Indonesia, yang banyak dijumpai pada masyarakat Sumatra, seperti Minangkabau, Aceh, dan Melayu. Lepat terbuat dari tepung …

Hawker HectorHawker Hector.DescrizioneTipoCooperazione. Equipaggio2 Costruttore Hawker Aircraft Data primo volo14 febbraio 1936 Utilizzatore principale RAF Esemplari179 Sviluppato dalHawker Hart Dimensioni e pesiLunghezza9,09 m (29 ft 9¾ in) Apertura alare11,26 m (36 ft 11½ in) Altezza3,18 m (10 ft 5 in) Superficie alare33,1 m²[1] (346 ft²) Carico alare67,3 kg/m² (14,2 lb/ft²) Peso a vuoto1 537 kg (3 389 lb) Peso carico2 227 kg (4 910 lb) PropulsioneMotore1 Napi…

Historic church in Manhattan, New York United States historic placeFirst Church of Christ, ScientistU.S. Historic districtContributing propertyNew York City Landmark No. LP-0833 Former building of the First Church of Christ, Scientist in Manhattan, New York CityShow map of New York CityShow map of New YorkShow map of the United StatesLocation1 West 96th Street, Manhattan, New York City, New York, United StatesCoordinates40°47′31.2″N 73°57′53.64″W / 40.792000°…

American businessman and inventor (1955–2011) For other uses, see Steve Jobs (disambiguation). Steve JobsJobs introduces the iPhone 4 in 2010.BornSteven Paul Jobs[1](1955-02-24)February 24, 1955San Francisco, California, USDiedOctober 5, 2011(2011-10-05) (aged 56)Palo Alto, California, USResting placeAlta Mesa Memorial ParkEducationReed College (attended)Years active1971–2011Known for Pioneer of the personal computer revolution with Steve Wozniak Co-creator of the Appl…

Kembali kehalaman sebelumnya