Result in mathematical economics on existence of a non-negative equilibrium output vector
The Hawkins–Simon condition refers to a result in mathematical economics , attributed to David Hawkins and Herbert A. Simon ,[ 1] that guarantees the existence of a non-negative output vector that solves the equilibrium relation in the input–output model where demand equals supply . More precisely, it states a condition for
[
I
− − -->
A
]
{\displaystyle [\mathbf {I} -\mathbf {A} ]}
under which the input–output system
[
I
− − -->
A
]
⋅ ⋅ -->
x
=
d
{\displaystyle [\mathbf {I} -\mathbf {A} ]\cdot \mathbf {x} =\mathbf {d} }
has a solution
x
^ ^ -->
≥ ≥ -->
0
{\displaystyle \mathbf {\hat {x}} \geq 0}
for any
d
≥ ≥ -->
0
{\displaystyle \mathbf {d} \geq 0}
. Here
I
{\displaystyle \mathbf {I} }
is the identity matrix and
A
{\displaystyle \mathbf {A} }
is called the input–output matrix or Leontief matrix after Wassily Leontief , who empirically estimated it in the 1940s.[ 2] Together, they describe a system in which
∑ ∑ -->
j
=
1
n
a
i
j
x
j
+
d
i
=
x
i
i
=
1
,
2
,
… … -->
,
n
{\displaystyle \sum _{j=1}^{n}a_{ij}x_{j}+d_{i}=x_{i}\quad i=1,2,\ldots ,n}
where
a
i
j
{\displaystyle a_{ij}}
is the amount of the i th good used to produce one unit of the j th good,
x
j
{\displaystyle x_{j}}
is the amount of the j th good produced, and
d
i
{\displaystyle d_{i}}
is the amount of final demand for good i . Rearranged and written in vector notation, this gives the first equation.
Define
[
I
− − -->
A
]
=
B
{\displaystyle [\mathbf {I} -\mathbf {A} ]=\mathbf {B} }
, where
B
=
[
b
i
j
]
{\displaystyle \mathbf {B} =\left[b_{ij}\right]}
is an
n
× × -->
n
{\displaystyle n\times n}
matrix with
b
i
j
≤ ≤ -->
0
,
i
≠ ≠ -->
j
{\displaystyle b_{ij}\leq 0,i\neq j}
.[ 3] Then the Hawkins–Simon theorem states that the following two conditions are equivalent
(i) There exists an
x
≥ ≥ -->
0
{\displaystyle \mathbf {x} \geq 0}
such that
B
⋅ ⋅ -->
x
>
0
{\displaystyle \mathbf {B} \cdot \mathbf {x} >0}
.
(ii) All the successive leading principal minors of
B
{\displaystyle \mathbf {B} }
are positive, that is
b
11
>
0
,
|
b
11
b
12
b
21
b
22
|
>
0
,
… … -->
,
|
b
11
b
12
… … -->
b
1
n
b
21
b
22
… … -->
b
2
n
⋮ ⋮ -->
⋮ ⋮ -->
⋱ ⋱ -->
⋮ ⋮ -->
b
n
1
b
n
2
… … -->
b
n
n
|
>
0
{\displaystyle b_{11}>0,{\begin{vmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{vmatrix}}>0,\ldots ,{\begin{vmatrix}b_{11}&b_{12}&\dots &b_{1n}\\b_{21}&b_{22}&\dots &b_{2n}\\\vdots &\vdots &\ddots &\vdots \\b_{n1}&b_{n2}&\dots &b_{nn}\end{vmatrix}}>0}
For a proof, see Morishima (1964),[ 4] Nikaido (1968),[ 3] or Murata (1977).[ 5] Condition (ii) is known as Hawkins–Simon condition . This theorem was independently discovered by David Kotelyanskiĭ ,[ 6] as it is referred to by Felix Gantmacher as Kotelyanskiĭ lemma .[ 7]
See also
References
^ Hawkins, David; Simon, Herbert A. (1949). "Some Conditions of Macroeconomic Stability". Econometrica . 17 (3/4): 245–248. doi :10.2307/1905526 . JSTOR 1905526 .
^ Leontief, Wassily (1986). Input-Output Economics (2nd ed.). New York: Oxford University Press. ISBN 0-19-503525-9 .
^ a b Nikaido, Hukukane (1968). Convex Structures and Economic Theory . Academic Press. pp. 90–92. ISBN 978-1-4832-6668-8 .
^ Morishima, Michio (1964). Equilibrium, Stability, and Growth: A Multi-sectoral Analysis . London: Oxford University Press. pp. 15–17. ISBN 978-0-19-828145-0 .
^ Murata, Yasuo (1977). Mathematics for Stability and Optimization of Economic Systems . New York: Academic Press. pp. 52–53. ISBN 978-1-4832-7129-3 .
^ Kotelyanskiĭ, D. M. (1952). "О некоторых свойствах матриц с положительными элементами" [On Some Properties of Matrices with Positive Elements] (PDF) . Mat. Sb. N.S. 31 (3): 497–506.
^ Gantmacher, Felix (1959). The Theory of Matrices . Vol. 2. New York: Chelsea. pp. 71–73. ISBN 978-0-8218-1393-5 .
Further reading