Share to: share facebook share twitter share wa share telegram print page

Hegerfeldt's theorem

Hegerfeldt's theorem is a no-go theorem that demonstrates the incompatibility of the existence of spatially localized discrete particles with the combination of the principles of quantum mechanics and special relativity. A crucial requirement is that the states of single particle have positive energy. It has been used to support the conclusion that reality must be described solely in terms of field-based formulations.[1][2] However, it is possible to construct localization observables in terms of positive-operator valued measures that are compatible with the restrictions imposed by the Hegerfeldt theorem.[3]

Specifically, Hegerfeldt's theorem refers to a free particle whose time evolution is determined by a positive Hamiltonian. If the particle is initially confined in a bounded spatial region, then the spatial region where the probability to find the particle does not vanish, expands superluminarly, thus violating Einstein causality by exceeding the speed of light.[4][5] Boundedness of the initial localization region can be weakened to a suitably exponential decay of the localization probability at the initial time. The localization threshold is provided by twice the Compton length of the particle. As a matter of fact, the theorem rules out the Newton-Wigner localization.

The theorem was developed by Gerhard C. Hegerfeldt and first published in 1974.[6][7][8]

See also

References

  1. ^ Halvorson, Hans; Clifton, Rob (November 2002). "No place for particles in relativistic quantum theories?". Ontological Aspects of Quantum Field Theory. pp. 181–213. arXiv:quant-ph/0103041. doi:10.1142/9789812776440_0010. ISBN 978-981-238-182-8. S2CID 8845639.
  2. ^ Finster, Felix; Paganini, Claudio F. (2022-09-16). "Incompatibility of Frequency Splitting and Spatial Localization: A Quantitative Analysis of Hegerfeldt's Theorem". Annales Henri Poincaré. 24 (2): 413–467. arXiv:2005.10120. doi:10.1007/s00023-022-01215-8. PMC 9928833. PMID 36817968.
  3. ^ Moretti, Valter (2023-06-07). "On the relativistic spatial localization for massive real scalar Klein–Gordon quantum particles". Letters in Mathematical Physics. 66 (3). arXiv:2304.02133. Bibcode:2023LMaPh.113...66M. doi:10.1007/s11005-023-01689-5. hdl:11572/379089.
  4. ^ Barat, N.; Kimball, J. C. (February 2003). "Localization and Causality for a free particle". Physics Letters A. 308 (2–3): 110–115. arXiv:quant-ph/0111060. Bibcode:2003PhLA..308..110B. doi:10.1016/S0375-9601(02)01806-6. S2CID 119332240.
  5. ^ Hobson, Art (2013-03-01). "There are no particles, there are only fields". American Journal of Physics. 81 (3): 211–223. arXiv:1204.4616. Bibcode:2013AmJPh..81..211H. doi:10.1119/1.4789885. S2CID 18254182.
  6. ^ Hegerfeldt, Gerhard C. (1974-11-15). "Remark on causality and particle localization". Physical Review D. 10 (10): 3320–3321. Bibcode:1974PhRvD..10.3320H. doi:10.1103/PhysRevD.10.3320. ISSN 0556-2821.
  7. ^ Hegerfeldt, Gerhard C. (1998). "Causality, particle localization and positivity of the energy". Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics. Vol. 504–504. pp. 238–245. arXiv:quant-ph/9806036. doi:10.1007/BFb0106784. ISBN 978-3-540-64305-0. S2CID 119463020.
  8. ^ Hegerfeldt, G.C. (December 1998). "Instantaneous spreading and Einstein causality in quantum theory". Annalen der Physik. 510 (7–8): 716–725. arXiv:quant-ph/9809030. doi:10.1002/andp.199851007-817. S2CID 248267636.


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya