Share to: share facebook share twitter share wa share telegram print page

House monotonicity

House monotonicity[1]: 134–141  (also called house-size monotonicity[2]) is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states (or among political parties). The property says that, if the number of seats in the "house" (the parliament) increases, and the method is re-activated, then no state (or party) should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.

In the context of committee elections, house monotonicity is often called committee monotonicity. It says that, if the size of the committee increases, then all the candidate that were previously elected, are still elected.

House monotonicity is the special case of resource monotonicity for the setting in which the resource consists of identical discrete items (the seats).

Methods violating house-monotonicity

An example of a method violating house-monotonicity is the largest remainder method (= Hamilton's method). Consider the following instance with three states:

10 seats house 11 seats house
State Population Fair share Seats Fair share Seats
A 6 4.286 4 4.714 5
B 6 4.286 4 4.714 5
C 2 1.429 2 1.571 1

When one seat is added to the house, the share of state C decreases from 2 to 1.

This occurs because increasing the number of seats increases the fair share faster for the large states than for the small states. In particular, large A and B had their fair share increase faster than small C. Therefore, the fractional parts for A and B increased faster than those for C. In fact, they overtook C's fraction, causing C to lose its seat, since the method examines which states have the largest remaining fraction.

This violation is known as the Alabama paradox due to the history of its discovery. After the 1880 census, C. W. Seaton, chief clerk of the United States Census Bureau, computed apportionments for all House sizes between 275 and 350, and discovered that Alabama would get eight seats with a House size of 299 but only seven with a House size of 300.[3]: 228–231 

Methods satisfying house-monotonicity

Methods for apportionment

All the highest-averages methods (= divisor methods) satisfy house monotonicity.[1]: Cor.4.3.1  This is easy to see when considering the implementation of divisor methods as picking sequences: when a seat are added, the only change is that the picking sequence is extended with one additional pick. Therefore, all states keep their previously picked seats. Similarly, rank-index methods, which are generalizations of divisor methods, satisfy house-monotonicity.

Moreover, capped divisor methods, which are variants of divisor methods in which a state never gets more seats than its upper quota, also satisfy house-monotonicity. An example is the Balinsky-Young quota method.[4]

Every house-monotone method can be defined as a recursive function of the house size h.[1]: Thm.7.2  Formally, an apportionment method is house-monotone and satisfies both quotas if-and-only-if it is constructed recursively as follows (see mathematics of apportionment for the definitions and notation):

  • ;
  • If , then is found by giving seats to some single state , where:
    • is the set of states that can get an additional seat without violating their upper quota for the new house size;
    • is the set of states that might receive less than their lower quota for some future house size.

Every coherent apportionment method is house-monotone.[2]: Sub.9.5 

Methods for multiwinner voting

The sequential Phragmen's voting rules, both for approval ballots and for ranked ballots, are committee-monotone. The same is true for Thiele's addition method and Thiele's elimination method. However, Thiele's optimization method is not committee-monotone.[5]: Sec.5 

See also

References

  1. ^ a b c Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  2. ^ a b Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2021-09-02
  3. ^ Stein, James D. (2008). How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics. New York: Smithsonian Books. ISBN 9780061241765.
  4. ^ Balinski, M. L.; Young, H. P. (1975-08-01). "The Quota Method of Apportionment". The American Mathematical Monthly. 82 (7): 701–730. doi:10.1080/00029890.1975.11993911. ISSN 0002-9890.
  5. ^ Janson, Svante (2018-10-12). "Phragmen's and Thiele's election methods". arXiv:1611.08826 [math.HO].

Read other articles:

1992 single by Elton John The Last SongUK 7-inch coverSingle by Elton Johnfrom the album The One B-sideThe Man Who Never Died (remix)ReleasedOctober 1992Length3:21LabelRocketMCASongwriter(s)Elton JohnBernie TaupinProducer(s)Chris ThomasElton John singles chronology Runaway Train (1992) The Last Song (1992) Simple Life (1993) Music videoThe Last Song on YouTube The Last Song is a song by English musician Elton John, released as the third single from his 23rd studio album, The One (1992). It was c…

Indonesia padaPesta Olahraga Asia 2014Kode IOCINAKONKomite Olimpiade IndonesiaSitus webwww.nocindonesia.or.id (dalam bahasa Inggris)Penampilan pada Pesta Olahraga Asia 2014 di IncheonPeserta186 dalam 23 cabang olahragaPembawa benderaI Gede Siman SudartawaMedaliPeringkat ke-17 4 5 11 Total 20 Perangkat pertandingan129Penampilan pada Pesta Olahraga Asia (ringkasan)195119541958196219661970197419781982198619901994199820022006201020142018 Indonesia berpartisipasi dalam Asian Games…

Untuk seniman Hungaria, lihat János Saxon-Szász. János SzászJános Szász di Festival Film Internasional Karlovy Vary ke-48 pada Juli 2013.Lahir14 Maret 1958 (umur 66)Budapest, HungariaPekerjaanSutradaraPenulis naskahTahun aktif1983-kini János Szász (lahir 14 Maret 1958) adalah seorang sutradara, penulis naskah dan pengarah teater asal Hungaria. Ia menyutradarai sebelas film sejak 1983. Film buatannya Witman fiúk ditayangkan dalam sesi Un Certain Regard di Festival Film Cannes 1…

Peta lokasi Marikina. Marikina adalah kota yang terletak di Metro Manila, Filipina. Kota ini memiliki populasi sebesar 479.394 jiwa. Kota ini memiliki 16 barangay. Pranala luar Philippine Standard Geographic Code Diarsipkan 2012-04-13 di Wayback Machine. lbsKota dan Munisipalitas Metro ManilaKotaCaloocan · Las Piñas · Makati · Malabon · Mandaluyong · Manila · Marikina · Muntinlupa · Parañaque · P…

رسلان حسب اللەتوف (بالشيشانية: Ӏимранан кIант Хасбулатов Руслан)‏  مناصب رئيس مجلس السوفيت الأعلى للاتحاد الروسي (11 )   في المنصب10 يوليو 1991  – 4 أكتوبر 1993  بوريس يلتسن    معلومات شخصية الميلاد 22 نوفمبر 1942 [1]  غروزني  الوفاة 3 يناير 2023 (80 سنة) [2][3]…

Fictional 46th president of the United States in House of Cards Fictional character Frank UnderwoodHouse of Cards characterKevin Spacey as Frank UnderwoodFirst appearanceChapter 1 (2013)Last appearanceChapter 65 (2017; official)Chapter 66 (2018; stand-in)Created byBeau WillimonPortrayed byKevin SpaceyUncredited stand-in (season 6)In-universe informationFull nameFrancis Joseph UnderwoodTitlePresident of the United StatesOccupationMember of the South Carolina Senate (Pre-series) Member of the U.S.…

Chronologie de la France ◄◄ 1679 1680 1681 1682 1683 1684 1685 1686 1687 ►► Chronologies Le château du Louvre en 1683. Alain Manesson Mallet, Description de l’Univers, t. 5, Paris, Denys Thierry, 1683.Données clés 1680 1681 1682  1683  1684 1685 1686Décennies :1650 1660 1670  1680  1690 1700 1710Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (D…

Lobelia Lobelia boninensis Klasifikasi ilmiah Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Asterales Famili: Campanulaceae Subfamili: Lobelioideae Genus: LobeliaL.[1] Spesies Lihat Daftar spesies Lobelia Sinonim[2] Mecoschistum Dulac Rapuntium Mill. Dortmanna Hill Cardinalis Fabr. Laurentia Michx. ex Adans. Chamula Noronha Pratia Gaudich. Holostigma G.Don Tupa G.Don Enchysia C.Presl Hypsela C.Presl Trimeris C.Presl Tylomium C.Presl…

Chronologie de la France ◄◄ 1574 1575 1576 1577 1578 1579 1580 1581 1582 ►► Chronologies Henri III présidant la première cérémonie de l’ordre du Saint Esprit le 31 décembre 1578. Enluminure de Guillaume Richardière.Données clés 1575 1576 1577  1578  1579 1580 1581Décennies :1540 1550 1560  1570  1580 1590 1600Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture,…

Former primary international airline of the United States (1927-1991) This article is about Pan American World Airways. For later airlines using the name, see Pan American Airways (1996–1998) and Pan American Airways (1998–2004). For other uses, see Pan Am (disambiguation). Pan American World AirwaysLogo used from 1973 to 1991 IATA ICAO Callsign PA PAA CLIPPER FoundedMarch 14, 1927; 97 years ago (1927-03-14)(as Pan American Airways)Commenced operationsOctober 19, 1927&…

1933 film by Roy Del Ruth Lady KillerPoster of The Lady KillerDirected byRoy Del RuthScreenplay byBen MarksonLillie HaywardStory byRosalind Keating ShafferDarryl F. Zanuck (uncredited)Produced byHenry BlankeStarringJames CagneyMae ClarkeMargaret LindsayCinematographyTony GaudioEdited byGeorge AmyMusic byLeo F. Forbstein[1]ProductioncompanyWarner Bros.Distributed byWarner Bros.Release dateDecember 3, 1933Running time76 minutesCountryUnited StatesLanguageEnglish Lady Killer is a 1933 Ameri…

Stadium in Havana, Cuba This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2016) (Learn how and when to remove this message) Estadio LatinoamericanoFormer namesGran Estadio de La Habana (1946-1961)Estadio del CerroLocationHavana, CubaCoordinates23°7′6″N 82°22′34″W / 23.11833°N 82.37611°W /…

American politician Patrick NevilleMinority Leader of the Colorado House of RepresentativesIn officeJanuary 11, 2017 – January 13, 2021Preceded byBrian DelGrossoSucceeded byHugh McKeanMember of the Colorado House of Representativesfrom the 45th districtIn officeJanuary 7, 2015 – January 9, 2023Preceded byCarole MurraySucceeded byLisa Frizell Personal detailsBorn1983 (age 40–41)Littleton, Colorado, U.S.Political partyRepublicanRelativesTim Neville (fat…

American politician from Georgia Dexter SharperMember of the Georgia House of Representatives from the 177th districtIncumbentAssumed office January 14, 2013Preceded byMark Hatfield Personal detailsBorn (1971-07-09) July 9, 1971 (age 52)Valdosta, GeorgiaPolitical partyDemocratic Dexter Sharper (born July 9, 1971) is an American politician who has served in the Georgia House of Representatives from the 177th district since 2013.[1][2] References ^ Representative Dexter Sh…

10th Panchen Lama of the Gelug School of Tibetan Buddhism (1938–1989) Lobsang Trinley Lhündrub Chökyi Gyaltsenཆོས་ཀྱི་རྒྱལ་མཚནThe 10th Panchen LamaThe Panchen Lama c. 195510th Panchen LamaReign3 June 1949 – 28 January 1989PredecessorThubten Choekyi NyimaSuccessor11th Panchen Lama:Gedhun Choekyi Nyima (Selected by the 14th Dalai Lama)Gyaincain Norbu (Selected by the Chinese leadership)Director of the Preparatory Committee for the Tibet Autonomous Region(actin…

Disambiguazione – Sant'Andrea rimanda qui. Se stai cercando altri significati, vedi Sant'Andrea (disambigua). Sant'AndreaIcona di Sant'Andrea Protocleto Apostolo  NascitaBetsaida, ? MortePatrasso, 30 novembre 60 d.C. Venerato daTutte le Chiese che ammettono il culto dei santi Santuario principaleBasilica di Sant'Andrea Apostolo (Patrasso) Ricorrenza30 novembre AttributiCroce decussata, pesci, rete da pesca Patrono diPontelongo, Ula Tirso,Villanova Truschedu (or), Sarzana…

Mosque (originally church) in Istanbul For other uses, see Hagia Sophia (disambiguation). Little Hagia SophiaKüçük Ayasofya CamiiLittle Hagia SophiaReligionAffiliationSunni Islam (present); Greek Orthodox (original)Year consecratedbetween 1506 and 1513 (Islam); c. 536 (Christianity)LocationLocationIstanbul, TurkeyLocation in the Fatih district of IstanbulGeographic coordinates41°00′10″N 28°58′19″E / 41.00278°N 28.97194°E / 41.00278; 28.97194ArchitectureArch…

Social class This article is about socio-economic studies. For the musical work, see Upper Middle Class White Trash. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with France, the United Kingdom, and United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page…

Caramelo e' Chocolate Serie de televisiónGénero TelenovelaDirigido por Nicolas Di BlasiTema principal Caramelo y ChocolateAmbientación 2015País de origen Guatemala GuatemalaN.º de episodios 120 capítulosLanzamientoMedio de difusión TelevisieteHorario Lunes a viernes a las 9:00 p. m..Audiencia 3.35 puntos de índice de audiencia4,4 de shareFecha de lanzamiento 10 de junio de 2015Cronología de producciónCaramelo e' ChocolateHospital y Emergencía[editar datos en Wikidata&#x…

شهريار بحراني   معلومات شخصية الميلاد سنة 1951 (العمر 72–73 سنة)  طهران، إيران الجنسية  إيران الحياة العملية المهنة مخرج أفلام،  وكاتب سيناريو  اللغات الفارسية  سنوات النشاط 1986 المواقع IMDB صفحته على IMDB  تعديل مصدري - تعديل   شهريار بحراني مخرج إيراني من أصل ب…

Kembali kehalaman sebelumnya