Idrialite is a rare hydrocarbon mineral with approximate chemical formula C22H14.[2][3][4]
Idrialite usually occurs as soft orthorhombic crystals, is usually greenish yellow to light brown in color with bluish fluorescence. It is named after Idrija, town in Slovenia, where its occurrence was first described.[4]
The mineral has also been called idrialine, and branderz in German It has also been called inflammable cinnabar due to its combustibility and association with cinnabar ores in the source locality.[5] A mineral found in the Skaggs Springs location of California was described in 1925 and named curtisite, but was eventually found to consist of the same compounds as idrialite, in somewhat different amounts.[6][7] Thus curtisite is now considered to be merely a variety of idrialite.[8]
Discovery and occurrence
Idrialite was first described in 1832 for an occurrence in the Idrija region west of Ljubljana, northwestern Slovenia,[4] mixed with clay, pyrite, quartz and gypsum associated with cinnabar.[2]
In the Skaggs Springs occurrence, the mineral occurs in a hot spring area of the Franciscan formation, around a vent in the sandstone that gave off flammable gases. The mineral was described in 1925 and named "curtisite" after the local resident L. Curtis who called attention to it.[9][10] The crystals are square or six sided flakes, 1 mm in diameter, yellow to pistachio green in transmitted light. It is associated with opaline silica, realgar (arsenic sulfide) and metacinnabarite (mercuric sulfide), which had been deposited in that order before it.[10]
Curtisite and idrialite have been found to be unique complex mixtures of over 100 polyaromatic hydrocarbons (PAHs) consisting of six specific PAH structural series with each member of a series differing from the previous member by addition of another aromatic ring. The curtisite and idrialite samples contained many of the same components but in considerably different relative amounts.[6][12]
Curtisite is also associated with small amounts of a dark brown oil, that appears to be responsible for some of the yellow color and most of the fluorescence, and can be separated by recrystallization.[10]
Based on the composition, it was conjectured that the compounds were produced by medium-temperature pyrolysis of organic matter, then further modified by extended equilibration at elevated temperatures in the subsurface and by recrystallization during migration.[7]
^ abcd"Idrialite" entry in John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols (): Handbook of Mineralogy. Published by the Mineralogical Society of America. Accessed on 2020-08-28
^ abDave Barthelmy (2012): "Idrialite Mineral Data". Online document at Webmineral.com. Accessed on 2020-08-28.
^ abcde"Idrialite" page at the Mindat.org online database. Accessed on 2020-08-28.
^ abcStephen A. Wise, Robert M. Campbell, W. Raymond West, Milton L. Lee, Keith D. Bartle (1986): "Characterization of polycyclic aromatic hydrocarbon minerals curtisite, idrialite and pendletonite using high-performance liquid chromatography, gas chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy". Chemical Geology, volume 54, issues 3–4, pages 339-357. doi:10.1016/0009-2541(86)90148-8
^ abMax Blumer (1975): "Curtisite, idrialite and pendletonite, polycyclic aromatic hydrocarbon minerals: Their composition and origin" Chemical Geology, volume 16, issue 4, pages 245-256. doi:10.1016/0009-2541(75)90064-9
^"Curtisite" page at the Mindat.org online database. Accessed on 2020-08-28.
^F. E. Wright and E. T. Allen (1925): "Curtisite, a new organic mineral from Skaggs Springs, Sonoma County, California (abstract)" American Mineralogist, volume 11, pages 67-67.
^Frank, Otakar; Jehlička, Jan; Edwards, Howell G.M. (December 2007). "Raman spectroscopy as tool for the characterization of thio-polyaromatic hydrocarbons in organic minerals". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 68 (4): 1065–1069. Bibcode:2007AcSpA..68.1065F. doi:10.1016/j.saa.2006.12.033. PMID17307383.
^T. A. Geissman, K. Y. Sun, and J. Murdoch (1967): "Organic minerals. Picine and chrysene as constituents of the mineral Curtisite (idrialite)". Experentia, volume 23, pages 793-794.