Share to: share facebook share twitter share wa share telegram print page

Integer factorization

Unsolved problem in computer science:
Can integer factorization be solved in polynomial time on a classical computer?

In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found.

When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature.[1] Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing.

Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are semiprimes, the product of two prime numbers. When they are both large, for instance more than two thousand bits long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by Fermat's factorization method), even the fastest prime factorization algorithms on the fastest computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any computer increases drastically.

Many cryptographic protocols are based on the difficulty of factoring large composite integers or a related problem—for example, the RSA problem. An algorithm that efficiently factors an arbitrary integer would render RSA-based public-key cryptography insecure.

Prime decomposition

Prime decomposition of n = 864 as 25 × 33

By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (By convention, 1 is the empty product.) Testing whether the integer is prime can be done in polynomial time, for example, by the AKS primality test. If composite, however, the polynomial time tests give no insight into how to obtain the factors.

Given a general algorithm for integer factorization, any integer can be factored into its constituent prime factors by repeated application of this algorithm. The situation is more complicated with special-purpose factorization algorithms, whose benefits may not be realized as well or even at all with the factors produced during decomposition. For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with n⌉ = 18848997159 which immediately yields b = a2n = 4 = 2 and hence the factors ab = 18848997157 and a + b = 18848997161. While these are easily recognized as composite and prime respectively, Fermat's method will take much longer to factor the composite number because the starting value of 18848997157⌉ = 137292 for a is a factor of 10 from 1372933.

Current state of the art

Among the b-bit numbers, the most difficult to factor in practice using existing algorithms are those semiprimes whose factors are of similar size. For this reason, these are the integers used in cryptographic applications.

In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power.[2] The researchers estimated that a 1024-bit RSA modulus would take about 500 times as long.[3]

The largest such semiprime yet factored was RSA-250, an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel Xeon Gold 6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the general number field sieve run on hundreds of machines.

Time complexity

No algorithm has been published that can factor all integers in polynomial time, that is, that can factor a b-bit number n in time O(bk) for some constant k. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist.[4][5]

There are published algorithms that are faster than O((1 + ε)b) for all positive ε, that is, sub-exponential. As of 2022, the algorithm with best theoretical asymptotic running time is the general number field sieve (GNFS), first published in 1993,[6] running on a b-bit number n in time:

For current computers, GNFS is the best published algorithm for large n (more than about 400 bits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that solves it in polynomial time. Shor's algorithm takes only O(b3) time and O(b) space on b-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using NMR techniques on molecules that provide seven qubits.[7]

In order to talk about complexity classes such as P, NP, and co-NP, the problem has to be stated as a decision problem.

Decision problem (Integer factorization) — For every natural numbers and , does n have a factor smaller than k besides 1?

It is known to be in both NP and co-NP, meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization n = d(n/d) with dk. An answer of "no" can be certified by exhibiting the factorization of n into distinct primes, all larger than k; one can verify their primality using the AKS primality test, and then multiply them to obtain n. The fundamental theorem of arithmetic guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both UP and co-UP.[8] It is known to be in BQP because of Shor's algorithm.

The problem is suspected to be outside all three of the complexity classes P, NP-complete,[9] and co-NP-complete. It is therefore a candidate for the NP-intermediate complexity class.

In contrast, the decision problem "Is n a composite number?" (or equivalently: "Is n a prime number?") appears to be much easier than the problem of specifying factors of n. The composite/prime problem can be solved in polynomial time (in the number b of digits of n) with the AKS primality test. In addition, there are several probabilistic algorithms that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime numbers to start with.

Factoring algorithms

Special-purpose

A special-purpose factoring algorithm's running time depends on the properties of the number to be factored or on one of its unknown factors: size, special form, etc. The parameters which determine the running time vary among algorithms.

An important subclass of special-purpose factoring algorithms is the Category 1 or First Category algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors.[10] For example, naive trial division is a Category 1 algorithm.

General-purpose

A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm,[10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

Other notable algorithms

Heuristic running time

In number theory, there are many integer factoring algorithms that heuristically have expected running time

in little-o and L-notation. Some examples of those algorithms are the elliptic curve method and the quadratic sieve. Another such algorithm is the class group relations method proposed by Schnorr,[11] Seysen,[12] and Lenstra,[13] which they proved only assuming the unproved generalized Riemann hypothesis.

Rigorous running time

The Schnorr–Seysen–Lenstra probabilistic algorithm has been rigorously proven by Lenstra and Pomerance[14] to have expected running time Ln[1/2, 1+o(1)] by replacing the GRH assumption with the use of multipliers. The algorithm uses the class group of positive binary quadratic forms of discriminant Δ denoted by GΔ. GΔ is the set of triples of integers (a, b, c) in which those integers are relative prime.

Schnorr–Seysen–Lenstra algorithm

Given an integer n that will be factored, where n is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant Δ is chosen as a multiple of n, Δ = −dn, where d is some positive multiplier. The algorithm expects that for one d there exist enough smooth forms in GΔ. Lenstra and Pomerance show that the choice of d can be restricted to a small set to guarantee the smoothness result.

Denote by PΔ the set of all primes q with Kronecker symbol (Δ/q) = 1. By constructing a set of generators of GΔ and prime forms fq of GΔ with q in PΔ a sequence of relations between the set of generators and fq are produced. The size of q can be bounded by c0(log|Δ|)2 for some constant c0.

The relation that will be used is a relation between the product of powers that is equal to the neutral element of GΔ. These relations will be used to construct a so-called ambiguous form of GΔ, which is an element of GΔ of order dividing 2. By calculating the corresponding factorization of Δ and by taking a gcd, this ambiguous form provides the complete prime factorization of n. This algorithm has these main steps:

Let n be the number to be factored.

  1. Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form.
  2. Take the t first primes p1 = 2, p2 = 3, p3 = 5, ..., pt, for some tN.
  3. Let fq be a random prime form of GΔ with (Δ/q) = 1.
  4. Find a generating set X of GΔ.
  5. Collect a sequence of relations between set X and {fq : qPΔ} satisfying:
  6. Construct an ambiguous form (a, b, c) that is an element fGΔ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = −4ac or Δ = a(a − 4c) or Δ = (b − 2a)(b + 2a).
  7. If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the factorization of n is found. In order to prevent useless ambiguous forms from generating, build up the 2-Sylow group Sll2(Δ) of G(Δ).

To obtain an algorithm for factoring any positive integer, it is necessary to add a few steps to this algorithm such as trial division, and the Jacobi sum test.

Expected running time

The algorithm as stated is a probabilistic algorithm as it makes random choices. Its expected running time is at most Ln[1/2, 1+o(1)].[14]

See also

Notes

  1. ^ Lenstra, Arjen K. (2011), "Integer Factoring", in van Tilborg, Henk C. A.; Jajodia, Sushil (eds.), Encyclopedia of Cryptography and Security, Boston, MA: Springer US, pp. 611–618, doi:10.1007/978-1-4419-5906-5_455, ISBN 978-1-4419-5905-8, retrieved 2022-06-22
  2. ^ "[Cado-nfs-discuss] 795-bit factoring and discrete logarithms". Archived from the original on 2019-12-02.
  3. ^ Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thomé, Emmanuel; Bos, Joppe W.; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; te Riele, Herman J. J.; Timofeev, Andrey; Zimmermann, Paul (2010). "Factorization of a 768-Bit RSA Modulus" (PDF). In Rabin, Tal (ed.). Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Computer Science. Vol. 6223. Springer. pp. 333–350. doi:10.1007/978-3-642-14623-7_18.
  4. ^ Krantz, Steven G. (2011), The Proof is in the Pudding: The Changing Nature of Mathematical Proof, New York: Springer, p. 203, doi:10.1007/978-0-387-48744-1, ISBN 978-0-387-48908-7, MR 2789493
  5. ^ Arora, Sanjeev; Barak, Boaz (2009), Computational complexity, Cambridge: Cambridge University Press, p. 230, doi:10.1017/CBO9780511804090, ISBN 978-0-521-42426-4, MR 2500087, S2CID 215746906
  6. ^ Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993). "Factoring integers with the number field sieve". The development of the number field sieve. Lecture Notes in Mathematics. Vol. 1554. Springer. pp. 50–94. doi:10.1007/BFb0091539. hdl:1887/2149. ISBN 978-3-540-57013-4. Retrieved 12 March 2021.
  7. ^ Vandersypen, Lieven M. K.; et al. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–887. arXiv:quant-ph/0112176. Bibcode:2001Natur.414..883V. doi:10.1038/414883a. PMID 11780055. S2CID 4400832.
  8. ^ Lance Fortnow (2002-09-13). "Computational Complexity Blog: Complexity Class of the Week: Factoring".
  9. ^ Goldreich, Oded; Wigderson, Avi (2008), "IV.20 Computational Complexity", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton, New Jersey: Princeton University Press, pp. 575–604, ISBN 978-0-691-11880-2, MR 2467561. See in particular p. 583.
  10. ^ a b David Bressoud and Stan Wagon (2000). A Course in Computational Number Theory. Key College Publishing/Springer. pp. 168–69. ISBN 978-1-930190-10-8.
  11. ^ Schnorr, Claus P. (1982). "Refined analysis and improvements on some factoring algorithms". Journal of Algorithms. 3 (2): 101–127. doi:10.1016/0196-6774(82)90012-8. MR 0657269. Archived from the original on September 24, 2017.
  12. ^ Seysen, Martin (1987). "A probabilistic factorization algorithm with quadratic forms of negative discriminant". Mathematics of Computation. 48 (178): 757–780. doi:10.1090/S0025-5718-1987-0878705-X. MR 0878705.
  13. ^ Lenstra, Arjen K (1988). "Fast and rigorous factorization under the generalized Riemann hypothesis" (PDF). Indagationes Mathematicae. 50 (4): 443–454. doi:10.1016/S1385-7258(88)80022-2.
  14. ^ a b Lenstra, H. W.; Pomerance, Carl (July 1992). "A Rigorous Time Bound for Factoring Integers" (PDF). Journal of the American Mathematical Society. 5 (3): 483–516. doi:10.1090/S0894-0347-1992-1137100-0. MR 1137100.

References

Read other articles:

Coordinate: 27°30′N 99°00′E / 27.5°N 99°E27.5; 99 Monti HengduanVeduta satellitare della regioneContinenteAsia Stati Cina Birmania Cima più elevataGongga (7556 m s.l.m.) I monti Hengduan (cinese semplificato: 横断山脉; cinese tradizionale: 橫斷山脈; pinyin: Héngduàn Shānmài) sono un sistema montuoso dell'Asia orientale (latitudine: 22-32° N, longitudine: 97-103° E) che forma la parte sud-orientale dell'altopiano tibetano e il confine occ…

2007 soundtrack album by Vishal–Shekhar, PyarelalOm Shanti OmSoundtrack album by Vishal–Shekhar, PyarelalReleased9 September 2007GenreFeature film soundtrackLength61:18LabelT-SeriesProducerGauri Khan Om Shanti Om is the soundtrack to the 2007 film of the same name directed by Farah Khan, produced by Gauri Khan through Red Chillies Entertainment and starred Shah Rukh Khan, Arjun Rampal and Deepika Padukone (in her film debut). The film's soundtrack featured six original songs, four re…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: A…

Pour les articles homonymes, voir Néo-classique. La Rotunda Santa Marija de Mosta, à Malte, est construite à partir de 1833. L'architecture néo-classique est un courant architectural procédant du néo-classicisme de la seconde moitié du XVIIIe siècle et du début du XIXe siècle. Succédant au classicisme, à l’architecture baroque et rococo, l'architecture néo-classique utilise les éléments gréco-romains (colonnes, fronton, proportions harmonieuses, portique) et se me…

Pietro Anastasi Informasi pribadiTanggal lahir (1948-04-07)7 April 1948Tempat lahir Catania, ItaliaTanggal meninggal 17 Januari 2020(2020-01-17) (umur 71)Tempat meninggal Varese, ItaliaTinggi 172 cm (5 ft 8 in)Posisi bermain PenyerangKarier junior1964–66 MassiminianaKarier senior*Tahun Tim Tampil (Gol)1966–1968 Varese 66 (17)1968–1976 Juventus 205 (78)1976–1978 Inter Milan 46 (7)1978–1981 Ascoli 58 (9)1981–1982 Lugano 14 (10)Total 389 (121)Tim nasional1967 Italia …

العلاقات السيراليونية الكندية سيراليون كندا   سيراليون   كندا تعديل مصدري - تعديل   العلاقات السيراليونية الكندية هي العلاقات الثنائية التي تجمع بين سيراليون وكندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة…

Final Liga Champions UEFA 2004TurnamenLiga Champions UEFA 2003–04 Monaco Porto 0 3 Tanggal26 Mei 2004StadionArena AufSchalke, GelsenkirchenPemain Terbaik Deco (Porto)[1]WasitKim Milton Nielsen (Denmark)Penonton53.053← 2003 2005 → Final Liga Champions UEFA 2004 adalah final pertandingan sepak bola Liga Champions UEFA 2003–04, yang diselenggarakan pada tanggal 26 Mei 2004, antara Monaco melawan Porto di final ke-12 dalam format Liga Champions UEFA dan ke-49 secara keseluruh…

Ike SupomoLahirMerdike Sulastri Tjokro28 Agustus 1947 (umur 76)Serang, Banten, Jawa Barat, IndonesiaNama lainIke TjokroIke SupomoPekerjaanPenulisTahun aktif1963–sekarangSuami/istriSupomopronoAnak3KerabatDonny Damara (keponakan) Merdike Sulastri Tjokro, lebih populer dengan nama Ike Supomo (lahir 28 Agustus 1947) adalah seorang penulis berkebangsaan Indonesia. Ayahnya, Raden Mas Tjokrosukarto merupakan pria asal Jawa Timur yang memiliki darah Jawa dan Madura, sedangkan ibunya ber…

La criminalité est une catégorie pénale et policière par laquelle sont définis quels actes, au sein d’une société, sont considérés comme constituant des délits ou des crimes. Elle est la transgression non tolérée par la société des normes juridiques en place. Une norme est pénale lorsque son but est de faire régner un minimum d'ordre dans la société et exige un comportement déterminé de ses membres. Les normes pénales sont régulatrices et coercitives, elles forment l'ordr…

Untuk kegunaan lain, lihat Amon. Lunette di Sistine Chapel menggambarkan raja-raja Amon, Hizkia dan Manasye. Amon (Ibrani: אָמוֹן, Yunani: Αμων) adalah raja kerajaan Yehuda dan anak dari Raja Manasye.[1][2] Masa pemerintahannya tidak terlalu lama, yaitu dua tahun (643-641 SM).[1][2] Menurut kesaksian Alkitab umat Kristen (2 Raja-raja 21:19-26), Amon berumur tiga puluh dua tahun pada waktu ia menjadi raja. Nama ibunya ialah Mesulemet binti Harus, dar…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Ai Fen (艾芬) adalah dokter berkebangsaan Tiongkok dan sekaligus Direktur Departemen Gawat Darurat di Central Hospital, Wuhan. Dialah tenaga medis pertama yang menyatakan bahwa novel koronavirus adalah sebuah epidemi yang mengancam dunia luar, dan karena itu ia juga sangat dikenal dengan nama panggilan The Whistle-Giver (发哨子的人) dalam sebuah artikel di majalah Chinese People. Artikel ini kemudian dihapus oleh rezim namun telanjur diposting di seluruh jaringan internet Tiongkok. Kode m…

1953 aviation accident American Airlines Flight 723An American Airlines Convair 240 similar to the accident aircraftAccidentDateSeptember 16, 1953SummaryControlled flight into terrain, pilot errorSiteColonie, New York, on approach to Albany Airport 42°44′03″N 73°51′42″W / 42.7341°N 73.8616°W / 42.7341; -73.8616AircraftAircraft typeConvair CV-240-0Aircraft nameFlagship BristolOperatorAmerican AirlinesRegistrationN94255Flight originBoston Airport1st st…

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное назва…

School in Feldkirch, AustriaStella MatutinaStella Matutina in FeldkirchLocationFeldkirch, AustriaInformationEstablished1651 (1651)Closed1979AffiliationJesuit (Catholic) Stella Matutina in Feldkirch, Austria, was a Jesuit school that operated in 1651–1773, 1856–1938, and 1946–1979. History, scholarship, international flair The “Kolleg” began in 1649 but opened formally in 1651. In 1773, when Pope Clement XIV discontinued the order of the Society of Jesus, the school closed.[1&#…

Viceregal representative of the Canadian monarch Lieutenant governor of British ColumbiaEmblem of the lieutenant governorFlag of the lieutenant governor of British ColumbiaIncumbentJanet Austin OBCsince 24 April 2018ViceroyStyleHer Honour the HonourableResidenceGovernment House, VictoriaAppointerThe governor general on the advice of the prime ministerTerm lengthAt the governor general's pleasure (usually 5 years)Formation20 July 1871First holderJoseph TrutchSalary$126,241/yearWebsitewww.ltg…

Filipino economist, academic, and government official This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (May 2022) (Learn how and when to remove this message) In this Philippine name, the middle name or maternal family name is Molina and the surname or paternal family name is Balisacan. The HonorableArsenio BalisacanOfficial portrait, 202213th and 16th Secretary of the National Economic an…

Ancient Roman term for a rural village or neighborhood For the early Peruvian culture, see Vicus (Peru). Politics of ancient Rome Periods Roman Kingdom753–509 BC Roman Republic509–27 BC Roman Empire27 BC – AD 395 Principate27 BC – AD 284 DominateAD 284–641 WesternAD 395–476 EasternAD 395–1453 Timeline Constitution Kingdom Republic Sullan republic Empire Augustan reforms Late Empire Political institutions Imperium Collegiality Auctoritas Roman citizenship Cursus honorum Assemblies C…

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅牌 …

1997 film by Brian Gilbert WildeTheatrical release posterDirected byBrian GilbertScreenplay byJulian MitchellBased onOscar Wildeby Richard EllmannProduced by Marc Samuelson Peter Samuelson Starring Stephen Fry Jude Law Vanessa Redgrave Jennifer Ehle Gemma Jones Judy Parfitt Michael Sheen Zoë Wanamaker Tom Wilkinson CinematographyMartin FuhrerEdited byMichael BradsellMusic byDebbie WisemanProductioncompanies Samuelson Productions Dove International NDF International Pony Canyon Pandora Film Capi…

Kembali kehalaman sebelumnya