Share to: share facebook share twitter share wa share telegram print page

Integer programming

An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.

Integer programming is NP-complete. In particular, the special case of 0–1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems.[1]

If some decision variables are not discrete, the problem is known as a mixed-integer programming problem.[2]

Canonical and standard form for ILPs

In integer linear programming, the canonical form is distinct from the standard form. An integer linear program in canonical form is expressed thus (note that it is the vector which is to be decided):[3]

and an ILP in standard form is expressed as

where are vectors and is a matrix. As with linear programs, ILPs not in standard form can be converted to standard form by eliminating inequalities, introducing slack variables () and replacing variables that are not sign-constrained with the difference of two sign-constrained variables.

Example

IP polytope with LP relaxation

The plot on the right shows the following problem.

The feasible integer points are shown in red, and the red dashed lines indicate their convex hull, which is the smallest convex polyhedron that contains all of these points. The blue lines together with the coordinate axes define the polyhedron of the LP relaxation, which is given by the inequalities without the integrality constraint. The goal of the optimization is to move the black dashed line as far upward while still touching the polyhedron. The optimal solutions of the integer problem are the points and that both have an objective value of 2. The unique optimum of the relaxation is with objective value of 2.8. If the solution of the relaxation is rounded to the nearest integers, it is not feasible for the ILP.

Proof of NP-hardness

The following is a reduction from minimum vertex cover to integer programming that will serve as the proof of NP-hardness.

Let be an undirected graph. Define a linear program as follows:

Given that the constraints limit to either 0 or 1, any feasible solution to the integer program is a subset of vertices. The first constraint implies that at least one end point of every edge is included in this subset. Therefore, the solution describes a vertex cover. Additionally given some vertex cover C, can be set to 1 for any and to 0 for any thus giving us a feasible solution to the integer program. Thus we can conclude that if we minimize the sum of we have also found the minimum vertex cover.[4]

Variants

Mixed-integer linear programming (MILP) involves problems in which only some of the variables, , are constrained to be integers, while other variables are allowed to be non-integers.

Zero–one linear programming (or binary integer programming) involves problems in which the variables are restricted to be either 0 or 1. Any bounded integer variable can be expressed as a combination of binary variables.[5] For example, given an integer variable, , the variable can be expressed using binary variables:

Applications

There are two main reasons for using integer variables when modeling problems as a linear program:

  1. The integer variables represent quantities that can only be integer. For example, it is not possible to build 3.7 cars.
  2. The integer variables represent decisions (e.g. whether to include an edge in a graph) and so should only take on the value 0 or 1.

These considerations occur frequently in practice and so integer linear programming can be used in many applications areas, some of which are briefly described below.

Production planning

Mixed-integer programming has many applications in industrial productions, including job-shop modelling. One important example happens in agricultural production planning and involves determining production yield for several crops that can share resources (e.g. land, labor, capital, seeds, fertilizer, etc.). A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but the variables must be constrained to be integer.

Scheduling

These problems involve service and vehicle scheduling in transportation networks. For example, a problem may involve assigning buses or subways to individual routes so that a timetable can be met, and also to equip them with drivers. Here binary decision variables indicate whether a bus or subway is assigned to a route and whether a driver is assigned to a particular train or subway. The zero–one programming technique has been successfully applied to solve a project selection problem in which projects are mutually exclusive and/or technologically interdependent. It is used in a special case of integer programming, in which all the decision variables are integers. Variable can assume only the values zero or one.

Territorial partitioning

Territorial partitioning or districting problems consist of partitioning a geographical region into districts in order to plan some operations while considering different criteria or constraints. Some requirements for this problem are: contiguity, compactness, balance or equity, respect of natural boundaries, and socio-economic homogeneity. Some applications for this type of problem include: political districting, school districting, health services districting and waste management districting.

Telecommunications networks

The goal of these problems is to design a network of lines to install so that a predefined set of communication requirements are met and the total cost of the network is minimal.[6] This requires optimizing both the topology of the network along with setting the capacities of the various lines. In many cases, the capacities are constrained to be integer quantities. Usually there are, depending on the technology used, additional restrictions that can be modeled as linear inequalities with integer or binary variables.

Cellular networks

The task of frequency planning in GSM mobile networks involves distributing available frequencies across the antennas so that users can be served and interference is minimized between the antennas.[7] This problem can be formulated as an integer linear program in which binary variables indicate whether a frequency is assigned to an antenna.

Other applications

Algorithms

The naive way to solve an ILP is to simply remove the constraint that x is integer, solve the corresponding LP (called the LP relaxation of the ILP), and then round the entries of the solution to the LP relaxation. But, not only may this solution not be optimal, it may not even be feasible; that is, it may violate some constraint.

Using total unimodularity

While in general the solution to LP relaxation will not be guaranteed to be integral, if the ILP has the form such that where and have all integer entries and is totally unimodular, then every basic feasible solution is integral. Consequently, the solution returned by the simplex algorithm is guaranteed to be integral. To show that every basic feasible solution is integral, let be an arbitrary basic feasible solution . Since is feasible, we know that . Let be the elements corresponding to the basis columns for the basic solution . By definition of a basis, there is some square submatrix of with linearly independent columns such that .

Since the columns of are linearly independent and is square, is nonsingular, and therefore by assumption, is unimodular and so . Also, since is nonsingular, it is invertible and therefore . By definition, . Here denotes the adjugate of and is integral because is integral. Therefore, Thus, if the matrix of an ILP is totally unimodular, rather than use an ILP algorithm, the simplex method can be used to solve the LP relaxation and the solution will be integer.

Exact algorithms

When the matrix is not totally unimodular, there are a variety of algorithms that can be used to solve integer linear programs exactly. One class of algorithms are cutting plane methods, which work by solving the LP relaxation and then adding linear constraints that drive the solution towards being integer without excluding any integer feasible points.

Another class of algorithms are variants of the branch and bound method. For example, the branch and cut method that combines both branch and bound and cutting plane methods. Branch and bound algorithms have a number of advantages over algorithms that only use cutting planes. One advantage is that the algorithms can be terminated early and as long as at least one integral solution has been found, a feasible, although not necessarily optimal, solution can be returned. Further, the solutions of the LP relaxations can be used to provide a worst-case estimate of how far from optimality the returned solution is. Finally, branch and bound methods can be used to return multiple optimal solutions.

Exact algorithms for a small number of variables

Suppose is an m-by-n integer matrix and is an m-by-1 integer vector. We focus on the feasibility problem, which is to decide whether there exists an n-by-1 vector satisfying .

Let V be the maximum absolute value of the coefficients in and . If n (the number of variables) is a fixed constant, then the feasibility problem can be solved in time polynomial in m and log V. This is trivial for the case n=1. The case n=2 was solved in 1981 by Herbert Scarf.[13] The general case was solved in 1983 by Hendrik Lenstra, combining ideas by László Lovász and Peter van Emde Boas.[14] Doignon's theorem asserts that an integer program is feasible whenever every subset of constraints is feasible; a method combining this result with algorithms for LP-type problems can be used to solve integer programs in time that is linear in and fixed-parameter tractable (FPT) in , but possibly doubly exponential in , with no dependence on .[15]

In the special case of 0-1 ILP, Lenstra's algorithm is equivalent to complete enumeration: the number of all possible solutions is fixed (2n), and checking the feasibility of each solution can be done in time poly(m, log V). In the general case, where each variable can be an arbitrary integer, complete enumeration is impossible. Here, Lenstra's algorithm uses ideas from Geometry of numbers. It transforms the original problem into an equivalent one with the following property: either the existence of a solution is obvious, or the value of (the n-th variable) belongs to an interval whose length is bounded by a function of n. In the latter case, the problem is reduced to a bounded number of lower-dimensional problems. The run-time complexity of the algorithm has been improved in several steps:

  • The original algorithm of Lenstra[14] had run-time .
  • Kannan[16] presented an improved algorithm with run-time .[17]
  • Frank and Tardos[18] presented an improved algorithm with run-time .[19][20]: Prop.8 
  • Dadush[21] presented an improved algorithm with run-time .
  • Reis and Rothvoss[22] presented an improved algorithm with run-time .

These algorithms can also be used for mixed integer linear programs (MILP) - programs in which some variables are integer and some variables are real.[23] The original algorithm of Lenstra[14]: Sec.5  has run-time , where n is the number of integer variables, d is the number of continuous variables, and L is the binary encoding size of the problem. Using techniques from later algorithms, the factor can be improved to or to .[23]

Heuristic methods

Since integer linear programming is NP-hard, many problem instances are intractable and so heuristic methods must be used instead. For example, tabu search can be used to search for solutions to ILPs.[24] To use tabu search to solve ILPs, moves can be defined as incrementing or decrementing an integer constrained variable of a feasible solution while keeping all other integer-constrained variables constant. The unrestricted variables are then solved for. Short-term memory can consist of previously tried solutions while medium-term memory can consist of values for the integer constrained variables that have resulted in high objective values (assuming the ILP is a maximization problem). Finally, long-term memory can guide the search towards integer values that have not previously been tried.

Other heuristic methods that can be applied to ILPs include

There are also a variety of other problem-specific heuristics, such as the k-opt heuristic for the traveling salesman problem. A disadvantage of heuristic methods is that if they fail to find a solution, it cannot be determined whether it is because there is no feasible solution or whether the algorithm simply was unable to find one. Further, it is usually impossible to quantify how close to optimal a solution returned by these methods are.

Sparse integer programming

It is often the case that the matrix that defines the integer program is sparse. In particular, this occurs when the matrix has a block structure, which is the case in many applications. The sparsity of the matrix can be measured as follows. The graph of has vertices corresponding to columns of , and two columns form an edge if has a row where both columns have nonzero entries. Equivalently, the vertices correspond to variables, and two variables form an edge if they share an inequality. The sparsity measure of is the minimum of the tree-depth of the graph of and the tree-depth of the graph of the transpose of . Let be the numeric measure of defined as the maximum absolute value of any entry of . Let be the number of variables of the integer program. Then it was shown in 2018[25] that integer programming can be solved in strongly polynomial and fixed-parameter tractable time parameterized by and . That is, for some computable function and some constant , integer programming can be solved in time . In particular, the time is independent of the right-hand side and objective function . Moreover, in contrast to the classical result of Lenstra, where the number of variables is a parameter, here the number of variables is a variable part of the input.

See also

References

  1. ^ Karp, Richard M. (1972). "Reducibility among Combinatorial Problems" (PDF). In R. E. Miller; J. W. Thatcher; J.D. Bohlinger (eds.). Complexity of Computer Computations. New York: Plenum. pp. 85–103. doi:10.1007/978-1-4684-2001-2_9. ISBN 978-1-4684-2003-6.
  2. ^ "Mixed-Integer Linear Programming (MILP): Model Formulation" (PDF). Retrieved 16 April 2018.
  3. ^ Papadimitriou, C. H.; Steiglitz, K. (1998). Combinatorial optimization: algorithms and complexity. Mineola, NY: Dover. ISBN 0486402584.
  4. ^ Erickson, J. (2015). "Integer Programming Reduction" (PDF). Archived from the original (PDF) on 18 May 2015.
  5. ^ Williams, H.P. (2009). Logic and integer programming. International Series in Operations Research & Management Science. Vol. 130. ISBN 978-0-387-92280-5.
  6. ^ Borndörfer, R.; Grötschel, M. (2012). "Designing telecommunication networks by integer programming" (PDF).
  7. ^ Sharma, Deepak (2010). "Frequency Planning".
  8. ^ Morais, Hugo; Kádár, Péter; Faria, Pedro; Vale, Zita A.; Khodr, H. M. (2010-01-01). "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming". Renewable Energy. 35 (1): 151–156. Bibcode:2010REne...35..151M. doi:10.1016/j.renene.2009.02.031. hdl:10400.22/1585. ISSN 0960-1481.
  9. ^ Omu, Akomeno; Choudhary, Ruchi; Boies, Adam (2013-10-01). "Distributed energy resource system optimisation using mixed integer linear programming". Energy Policy. 61: 249–266. Bibcode:2013EnPol..61..249O. doi:10.1016/j.enpol.2013.05.009. ISSN 0301-4215. S2CID 29369795.
  10. ^ Schouwenaars, T.; Valenti, M.; Feron, E.; How, J. (2005). "Implementation and Flight Test Results of MILP-based UAV Guidance". 2005 IEEE Aerospace Conference. pp. 1–13. doi:10.1109/AERO.2005.1559600. ISBN 0-7803-8870-4. S2CID 13447718.
  11. ^ Radmanesh, Mohammadreza; Kumar, Manish (2016-03-01). "Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming". Aerospace Science and Technology. 50: 149–160. Bibcode:2016AeST...50..149R. doi:10.1016/j.ast.2015.12.021. ISSN 1270-9638.
  12. ^ Bast, Hannah; Brosi, Patrick; Storandt, Sabine (2017-10-05). "Efficient Generation of Geographically Accurate Transit Maps". arXiv:1710.02226 [cs.CG].
  13. ^ Scarf, Herbert E. (1981). "Production Sets with Indivisibilities, Part I: Generalities". Econometrica. 49 (1): 1–32. doi:10.2307/1911124. ISSN 0012-9682. JSTOR 1911124.
  14. ^ a b c Lenstra, H. W. (1983-11-01). "Integer Programming with a Fixed Number of Variables". Mathematics of Operations Research. 8 (4): 538–548. CiteSeerX 10.1.1.431.5444. doi:10.1287/moor.8.4.538. ISSN 0364-765X.
  15. ^ Amenta, Nina; De Loera, Jesús A.; Soberón, Pablo (2017). "Helly's theorem: new variations and applications". In Harrington, Heather A.; Omar, Mohamed; Wright, Matthew (eds.). Proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics held in San Antonio, TX, January 11, 2015. Contemporary Mathematics. Vol. 685. Providence, Rhode Island: American Mathematical Society. pp. 55–95. arXiv:1508.07606. doi:10.1090/conm/685. ISBN 9781470423216. MR 3625571.
  16. ^ Kannan, Ravi (1987-08-01). "Minkowski's Convex Body Theorem and Integer Programming". Mathematics of Operations Research. 12 (3): 415–440. doi:10.1287/moor.12.3.415. ISSN 0364-765X. S2CID 495512.
  17. ^ Goemans, Michel X.; Rothvoss, Thomas (2020-11-07). "Polynomiality for Bin Packing with a Constant Number of Item Types". Journal of the ACM. 67 (6): 38:1–38:21. doi:10.1145/3421750. hdl:1721.1/92865. ISSN 0004-5411. S2CID 227154747.
  18. ^ Frank, András; Tardos, Éva (1987-03-01). "An application of simultaneous diophantine approximation in combinatorial optimization". Combinatorica. 7 (1): 49–65. doi:10.1007/BF02579200. ISSN 1439-6912. S2CID 45585308.
  19. ^ Bliem, Bernhard; Bredereck, Robert; Niedermeier, Rolf (2016-07-09). "Complexity of efficient and envy-free resource allocation: few agents, resources, or utility levels". Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. IJCAI'16. New York, New York, USA: AAAI Press: 102–108. ISBN 978-1-57735-770-4.
  20. ^ Bredereck, Robert; Kaczmarczyk, Andrzej; Knop, Dušan; Niedermeier, Rolf (2019-06-17). "High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming". Proceedings of the 2019 ACM Conference on Economics and Computation. EC '19. Phoenix, AZ, USA: Association for Computing Machinery. pp. 505–523. doi:10.1145/3328526.3329649. ISBN 978-1-4503-6792-9. S2CID 195298520.
  21. ^ Dadush, Daniel (2012-06-14). "Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation.
  22. ^ Reis, Victor; Rothvoss, Thomas (2023-03-26). "The Subspace Flatness Conjecture and Faster Integer Programming".
  23. ^ a b Hildebrand, Robert (2016-10-07). "FPT algorithm for mixed integer program". Theoretical Computer Science Stack Exchange. Retrieved 2024-05-21.
  24. ^ Glover, F. (1989). "Tabu search-Part II". ORSA Journal on Computing. 1 (3): 4–32. doi:10.1287/ijoc.2.1.4. S2CID 207225435.
  25. ^ Koutecký, Martin; Levin, Asaf; Onn, Shmuel (2018). "A parameterized strongly polynomial algorithm for block structured integer programs". In Chatzigiannakis, Ioannis; Kaklamanis, Christos; Marx, Dániel; Sannella, Donald (eds.). 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9–13, 2018, Prague, Czech Republic. LIPIcs. Vol. 107. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. pp. 85:1–85:14. arXiv:1802.05859. doi:10.4230/LIPICS.ICALP.2018.85.

Further reading

Read other articles:

 AG8  SP8  Stasiun LRT Plaza RakyatStasiun Angkutan cepat Rute Sentul Timur-Ampang dan Rute Sentul Timur-Sri PetalingLantai peron stasiun Plaza Rakyat.Koordinat3°8′40″N 101°42′5″E / 3.14444°N 101.70139°E / 3.14444; 101.70139PemilikSyarikat Prasarana Negara (2002 – kini); diurus oleh RapidKL.JalurRute Sentul Timur-Ampang dan Rute Sentul Timur-Sri Petaling (1996 – kini)Jumlah peron2 peron sisiJumlah jalur2SejarahDibuka16 Desember 1996Oper…

Patung Hayk Nahapet di Yerevan, Armenia Hayk mengalahkan Bel dengan panah Hayk yang Agung (bahasa Armenia: Հայկ), Pelafalan Armenia: [hajk], atau yang Agung Hayk, juga dikenal sebagai Hayk Nahapet (Հայկ Նահապետ, Pelafalan Armenia: [hajk nahapɛt], Hayk kepala keluarga atau patriark[1]), merupakan seorang patriark legendaris dan pendiri Bangsa Armenia. Kisahnya diceritakan di dalam Sejarah Armenia yang dikaitkan dengan sejarahwan Armenia, Movses Khorenatsi (41…

Cierra RamirezRamirez pada 2014LahirCierra Alexa Ramirez9 Maret 1995 (umur 29)Texas, Amerika serikatPekerjaanPenyanyi dan aktrisTahun aktif2006–sekarangDikenal atasMariana Adams Foster dalam The Fosters (2013) dan Good Trouble Cierra Alexa Ramirez (lahir 9 Maret 1995) adalah seorang aktris dan penyanyi Amerika Serikat. Dia memainkan karakter Mariana Adams Foster dalam serial dari saluran TV kabel Freeform berjudul The Fosters dan mengulang perannya dalam serial sempalan berjudul Good…

Artikel ini bukan mengenai Taxi Driver. A Taxi DriverPoster rilis layar lebarNama lainHangul택시운전사 Hanja택시運轉士 Alih Aksara yang DisempurnakanTaeksi Unjeonsa SutradaraJang HoonProduserPark Un-kyoungChoi Ki-supDitulis olehEom Yu-naPemeranSong Kang-hoThomas KretschmannPenata musikJo Yeong-wookSinematograferGo Nak-seonPenyuntingKim Sang-bumKim Jae-bumPerusahaanproduksiThe LampDistributorShowboxTanggal rilis 02 Agustus 2017 (2017-08-02) Durasi137 menitNegaraKorea Se…

Boys Be...Berkas:BoysBe vol01 Cover.jpgGenreShonen, Romantis, Komedi, Kehidupan sekolah MangaPengarangMasahiro Itabashi (cerita) Hiroyuki Tamakoshi (gambar)Penerbit Kodansha Tokyopop AnimeSutradaraMasami ShimodaStudioHal Film Maker  Portal anime dan manga  Bagian dari seriManga Daftar manga Simbol · A · B · C · D · E · F · G · H · I · J · K · L ·&…

العلاقات الزيمبابوية السويسرية زيمبابوي سويسرا   زيمبابوي   سويسرا تعديل مصدري - تعديل   العلاقات الزيمبابوية السويسرية هي العلاقات الثنائية التي تجمع بين زيمبابوي وسويسرا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه …

Pembagian administratif Israel tingkat pertama Pembagian administratif Israel tingkat pertama terdiri atas 6 distrik (מָחוֹז, mahoz). Tingkat kedua adalah 15 subdistrik (נָפָה, nafa). Tingkat ketiga terdiri atas 76 arimci, 265 moatzot mekomiot, dan 53 moatzot azoriot. lbsPembagian administratif AsiaNegaraberdaulat Afganistan Arab Saudi Armenia1 Azerbaijan1 Bahrain Bangladesh Bhutan Brunei Filipina Georgia1 India Indonesia Irak Iran Israel Jepang Kamboja Kazakhstan3 Kirgizstan Korea Se…

Artikel ini menggunakan kata-kata yang berlebihan dan hiperbolis tanpa memberikan informasi yang jelas. Silakan buang istilah-istilah yang hiperbolis tersebut. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Faisol Riza Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019PresidenJoko Widodo PendahuluIr. H. Teguh Juwarno, M.Si.PenggantiPetahana Informasi pribadiLahir01 Januari 1973 (umur 51)Probolinggo, Jawa TimurKebangsaanIndonesiaP…

Voce principale: Valenzana Mado Società Sportiva Dilettantistica. Valenzana CalcioStagione 2006-2007Sport calcio Squadra Valenzana Allenatore Oscar Piantoni Presidente Alberto Omodeo Serie C29º posto nel girone A. Maggiori presenzeCampionato: Fumagalli, Gadau, Melani, Serra (32) Miglior marcatoreCampionato: Colonna (12) 2005-2006 2007-2008 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Valenzana Calcio nelle competizioni ufficiali della stagion…

Iconic game-winning touchdown in 1998 NFL playoffs The Catch II3Com Park at Candlestick Point in San Francisco, California, the site of the game. Green Bay Packers (5) (11–5) San Francisco 49ers (4) (12–4) 27 30 Head coach:Mike Holmgren Head coach:Steve Mariucci 1234 Total GB 314010 27 SF 731010 30 DateJanuary 3, 1999Stadium3Com Park at Candlestick Point, San Francisco, CaliforniaRefereeGerald AustinAttendance66,506Hall of FamersPackers: Ron Wolf (general manager), LeRoy Butler, Brett Favre,…

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Willian Farias Nazionalità  Brasile Altezza 178 cm Peso 74 kg Calcio Ruolo Centrocampista Squadra  Grêmio Novorizontino Carriera Giovanili 2000-2008 Coritiba Squadre di club1 2009-2014 Coritiba81 (0)[1]2014-2015 Cruzeiro17 (0)[2]2016-2018 Vitória64 (2)[3]…

Gallic tribe A map of Gaul in the 1st century BC, showing the relative positions of the Celtic tribes. The term Germani (Germania = the fertile land) is a description of territory populated by various ethnicities - not of a tribe. Silver denier of the Bituriges Cubi, 1780 mg. Hotel de la Monnaie. The Bituriges Cubi (Gaulish: Biturīges Cubi) were a Gallic tribe dwelling in a territory corresponding to the later province of Berry, which is named after them, during the Iron Age and the Roman perio…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: I Get Money Birdman song – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to …

GorgiasLahirc. 483 SMLeontini, SisiliaMeninggal375 SMEraFilsafat Pra-SokratikKawasanFilsafat BaratAliranSofismeMinat utamaDialektika, Retorika, Dipengaruhi Empedokles, Zeno, Melissos Memengaruhi Isokrates, Plato Gorgias adalah seorang filsuf yang termasuk sebagai kaum sofis. Di antara kaum Sofis, hanya Protagoras yang lebih terkenal darinya.[1] Selain sebagai filsuf, ia terkenal di bidang retorika.[2] Seperti kaum sofis lainnya, ia juga mengajar dan mengumpulkan murid-murid.…

Wim Wenders alla Berlinale 2017 Wim Wenders, vero nome Ernst Wilhelm Wenders[1] (Düsseldorf, 14 agosto 1945), è un regista, sceneggiatore e produttore cinematografico tedesco. Esponente di primo piano del Nuovo cinema tedesco,[2][3] ha conosciuto il successo internazionale dirigendo pellicole quali Paris, Texas e Il cielo sopra Berlino, che gli sono valsi numerosi riconoscimenti di carattere internazionale. Palma d'oro a Cannes nel 1984, ha inoltre ricevuto l'Orso d'oro…

English writer, Islamic scholar, and philosopher (1909–2005) For the footballer and football manager, see Martin Ling. Martin LingsAbū Bakr Sirāj al-DīnLings in 2001TitleShaykhPersonalBorn(1909-01-24)24 January 1909Burnage, Manchester, EnglandDied12 May 2005(2005-05-12) (aged 96)Westerham, Kent, EnglandReligionIslamEraModern eraCreedSunniMovementTraditionalist SchoolNotable work(s)Muhammad: His Life Based on the Earliest SourcesAlma materClifton CollegeMagdalen College, OxfordScho…

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі орг…

李光耀逝世及葬礼李光耀(1923年-2015年)日期2015年3月23日-2015年3月29日地点新加坡斯里淡马锡(私人守灵)新加坡国会大厦(民众瞻仰)新加坡国立大学文化中心(国葬)万礼火葬场(英语:Mandai Crematorium and Columbarium)(火葬)网站www.rememberingleekuanyew.sg 2015年3月23日凌晨3時18分(新加坡標準時間),新加坡建国后首任总理、前內閣资政和执政人民行动党首任秘书长李光耀因…

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) 土…

Women's ski slopestyle at the FIS Freestyle Ski and Snowboarding World Championships 2019VenuePark City Mountain ResortLocationUtah, United StatesDatesFebruary 6Competitors22 from 14 nations← 20172021 → FIS Freestyle Ski and SnowboardingWorld Championships 2019Freestyle skiing eventsMogulsmenwomenDual mogulsmenwomenAerialsmenwomenTeam aerialsmixedBig airmenwomenHalfpipemenwomenSlopestylemenwomenSki crossmenwomenSnowboarding eventsBig airmenwomenHalfpipem…

Kembali kehalaman sebelumnya