Share to: share facebook share twitter share wa share telegram print page

International Chemical Identifier

InChI
Developer(s)InChI Trust
Initial releaseApril 15, 2005 (2005-04-15)[1][2]
Stable release
1.06 / December 15, 2020; 3 years ago (2020-12-15)
Repository
Operating systemMicrosoft Windows and Unix-like
PlatformIA-32 and x86-64
Available inEnglish
LicenseIUPAC / InChI Trust Licence
Websitewww.inchi-trust.org

The International Chemical Identifier (InChI, pronounced /ˈɪn/ IN-chee)[3] is a textual identifier for chemical substances, designed to provide a standard way to encode molecular information and to facilitate the search for such information in databases and on the web. Initially developed by the International Union of Pure and Applied Chemistry (IUPAC) and National Institute of Standards and Technology (NIST) from 2000 to 2005, the format and algorithms are non-proprietary. Since May 2009, it has been developed by the InChI Trust, a nonprofit charity from the United Kingdom which works to implement and promote the use of InChI.[4]

The identifiers describe chemical substances in terms of layers of information — the atoms and their bond connectivity, tautomeric information, isotope information, stereochemistry, and electronic charge information.[5] Not all layers have to be provided; for instance, the tautomer layer can be omitted if that type of information is not relevant to the particular application. The InChI algorithm converts input structural information into a unique InChI identifier in a three-step process: normalization (to remove redundant information), canonicalization (to generate a unique number label for each atom), and serialization (to give a string of characters).

InChIs differ from the widely used CAS registry numbers in three respects: firstly, they are freely usable and non-proprietary; secondly, they can be computed from structural information and do not have to be assigned by some organization; and thirdly, most of the information in an InChI is human readable (with practice). InChIs can thus be seen as akin to a general and extremely formalized version of IUPAC names. They can express more information than the simpler SMILES notation and, in contrast to SMILES strings, every structure has a unique InChI string, which is important in database applications. Information about the 3-dimensional coordinates of atoms is not represented in InChI; for this purpose a format such as PDB can be used.

The InChIKey, sometimes referred to as a hashed InChI, is a fixed length (27 character) condensed digital representation of the InChI that is not human-understandable. The InChIKey specification was released in September 2007 in order to facilitate web searches for chemical compounds, since these were problematic with the full-length InChI.[6] Unlike the InChI, the InChIKey is not unique: though collisions are expected to be extremely rare, there are known collisions.[7]

In January 2009 the 1.02 version of the InChI software was released. This provided a means to generate so called standard InChI, which does not allow for user selectable options in dealing with the stereochemistry and tautomeric layers of the InChI string. The standard InChIKey is then the hashed version of the standard InChI string. The standard InChI will simplify comparison of InChI strings and keys generated by different groups, and subsequently accessed via diverse sources such as databases and web resources.

The continuing development of the standard has been supported since 2010 by the not-for-profit InChI Trust, of which IUPAC is a member. The current software version is 1.06 and was released in December 2020.[8] Prior to 1.04, the software was freely available under the open-source LGPL license,[9] but it now uses a custom license called IUPAC-InChI Trust License.[10]

Generation

In order to avoid generating different InChIs for tautomeric structures, before generating the InChI, an input chemical structure is normalized to reduce it to its so-called core parent structure. This may involve changing bond orders, rearranging formal charges and possibly adding and removing protons. Different input structures may give the same result; for example, acetic acid and acetate would both give the same core parent structure, that of acetic acid. A core parent structure may be disconnected, consisting of more than one component, in which case the sublayers in the InChI usually consist of sublayers for each component, separated by semicolons (periods for the chemical formula sublayer). One way this can happen is that all metal atoms are disconnected during normalization; so, for example, the InChI for tetraethyllead will have five components, one for lead and four for the ethyl groups.[5]

The first, main, layer of the InChI refers to this core parent structure, giving its chemical formula, non-hydrogen connectivity without bond order (/c sublayer) and hydrogen connectivity (/h sublayer.) The /q portion of the charge layer gives its charge, and the /p portion of the charge layer tells how many protons (hydrogen ions) must be added to or removed from it to regenerate the original structure. If present, the stereochemical layer, with sublayers b, /t, /m and /s, gives stereochemical information, and the isotopic layer /i (which may contain sublayers /h, /b, /t, /m and /s) gives isotopic information. These are the only layers which can occur in a standard InChI.[5]

If the user wants to specify an exact tautomer, a fixed hydrogen layer /f can be appended, which may contain various additional sublayers; this cannot be done in standard InChI though, so different tautomers will have the same standard InChI (for example, alanine will give the same standard InChI whether input in a neutral or a zwitterionic form.) Finally, a nonstandard reconnected /r layer can be added, which effectively gives a new InChI generated without breaking bonds to metal atoms. This may contain various sublayers, including /f.[5]

Format and layers

InChI format
Internet media type
chemical/x-inchi
Type of formatchemical file format

Every InChI starts with the string "InChI=" followed by the version number, currently 1. If the InChI is standard, this is followed by the letter S for standard InChIs, which is a fully standardized InChI flavor maintaining the same level of attention to structure details and the same conventions for drawing perception. The remaining information is structured as a sequence of layers and sub-layers, with each layer providing one specific type of information. The layers and sub-layers are separated by the delimiter "/" and start with a characteristic prefix letter (except for the chemical formula sub-layer of the main layer). The six layers with important sublayers are:

  1. Main layer (always present)
    • Chemical formula (no prefix). This is the only sublayer that must occur in every InChI. Numbers used throughout the InChI are given in the formula's element order excluding hydrogen atoms. For example, "/C10H16N5O13P3" implies that atoms numbered 1–10 are carbons, 11–15 are nitrogens, 16–28 are oxygens, and 29–31 are phosphorus.[11]
    • Atom connections (prefix: "c"). The atoms in the chemical formula (except for hydrogens) are numbered in sequence; this sublayer describes which atoms are connected by bonds to which other ones. The type of those bonds is later specified in the stereochemical layer prefixed by "b".
    • Hydrogen atoms (prefix: "h"). Describes how many hydrogen atoms are connected to each of the other atoms.
  2. Charge layer
    • charge sublayer (prefix: "q")
    • proton sublayer (prefix: "p" for "protons")
  3. Stereochemical layer
    • double bonds and cumulenes (prefix: "b")
    • tetrahedral stereochemistry of atoms and allenes (prefixes: "t", "m")
    • type of stereochemistry information (prefix: "s")
  4. Isotopic layer (prefix: "i"), may include sublayers:[11]
    • sublayer "h" for isotopic hydrogen
    • sublayers "b", "t", "m", "s" for isotopic stereochemistry
  5. Fixed-H layer (prefix: "f") for tautomeric hydrogens; contains some or all of the above types of layers except atom connections; may end with "o" sublayer; never included in standard InChI[11]
  6. Reconnected layer (prefix: "r"); contains the whole InChI of a structure with reconnected metal atoms; never included in standard InChI

The delimiter-prefix format has the advantage that a user can easily use a wildcard search to find identifiers that match only in certain layers.

Examples
Structural formula standard InChI
InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3
L-ascorbic acid with InChI
InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5+/m0/s1

InChIKey

The condensed, 27 character InChIKey is a hashed version of the full InChI (using the SHA-256 algorithm), designed to allow for easy web searches of chemical compounds.[6] The standard InChIKey is the hashed counterpart of standard InChI. Most chemical structures on the Web up to 2007 have been represented as GIF files, which are not searchable for chemical content. The full InChI turned out to be too lengthy for easy searching, and therefore the InChIKey was developed. There is a very small, but nonzero chance of two different molecules having the same InChIKey, but the probability for duplication of only the first 14 characters has been estimated as only one duplication in 75 databases each containing one billion unique structures. With all databases currently having below 50 million structures, such duplication appears unlikely at present. A recent study more extensively studies the collision rate finding that the experimental collision rate is in agreement with the theoretical expectations.[12]

The InChIKey currently consists of three parts separated by hyphens, of 14, 10 and one character(s), respectively, like XXXXXXXXXXXXXX-YYYYYYYYFV-P. The first 14 characters result from a SHA-256 hash of the connectivity information (the main layer and /q sublayer of the charge layer) of the InChI. The second part consists of 10 characters resulting from a hash of the remaining layers of the InChI, a single character indicating the kind of InChIKey (S for standard and N for nonstandard), and a character indicating the version of InChI used (currently A for version 1). Finally, the single character at the end indicates the protonation of the core parent structure, corresponding to the /p sublayer of the charge layer (N for no protonation, O, P, ... if protons should be added and M, L, ... if they should be removed.)[13][5]

Example

Morphine structure

Morphine has the structure shown on the right. The standard InChI for morphine is InChI=1S/C17H19NO3/c1-18-7-6-17-10-3-5-13(20)16(17)21-15-12(19)4-2-9(14(15)17)8-11(10)18/h2-5,10-11,13,16,19-20H,6-8H2,1H3/t10-,11+,13-,16-,17-/m0/s1 and the standard InChIKey for morphine is BQJCRHHNABKAKU-KBQPJGBKSA-N.[14]

InChI resolvers

As the InChI cannot be reconstructed from the InChIKey, an InChIKey always needs to be linked to the original InChI to get back to the original structure. InChI Resolvers act as a lookup service to make these links, and prototype services are available from National Cancer Institute, the UniChem service at the European Bioinformatics Institute, and PubChem. ChemSpider has had a resolver until July 2015 when it was decommissioned.[15]

Name

The format was originally called IChI (IUPAC Chemical Identifier), then renamed in July 2004 to INChI (IUPAC-NIST Chemical Identifier), and renamed again in November 2004 to InChI (IUPAC International Chemical Identifier), a trademark of IUPAC.

Continuing development

Scientific direction of the InChI standard is carried out by the IUPAC Division VIII Subcommittee, and funding of subgroups investigating and defining the expansion of the standard is carried out by both IUPAC and the InChI Trust. The InChI Trust funds the development, testing and documentation of the InChI. Current extensions are being defined to handle polymers and mixtures, Markush structures, reactions[16] and organometallics, and once accepted by the Division VIII Subcommittee will be added to the algorithm.

Software

The InChI Trust has developed software to generate the InChI, InChIKey and other identifiers. The release history of this software follows.[17]

Software and version Date License Comments
InChI v. 1 April 2005
InChI v. 1.01 August 2006
InChI v. 1.02beta Sep. 2007 LGPL 2.1 Adds InChIKey functionality.
InChI v. 1.02 Jan. 2009 LGPL 2.1 Changed format for InChIKey.
Introduces standard InChI.
InChI v. 1.03 June 2010 LGPL 2.1
InChI v. 1.03 source code docs March 2011
InChI v. 1.04 Sep. 2011 IUPAC/InChI Trust InChI Licence 1.0 New license.
Support for elements 105-112 added.
CML support removed.
InChI v. 1.05 Jan. 2017 IUPAC/InChI Trust InChI Licence 1.0 Support for elements 113-118 added.
Experimental polymer support.
Experimental large molecule support.
RInChI v. 1.00 March 2017 IUPAC/InChI Trust InChI Licence 1.0, and BSD-style Computes reaction InChIs.[16]
InChI v. 1.06 Dec. 2020 IUPAC/InChI Trust InChI Licence 1.0[10] Revised polymer support.

Adoption

The InChI has been adopted by many larger and smaller databases, including ChemSpider, ChEMBL, Golm Metabolome Database, OpenPHACTS, and PubChem.[18] However, the adoption is not straightforward, and many databases show a discrepancy between the chemical structures and the InChI they contain, which is a problem for linking databases.[19]

See also

Notes and references

  1. ^ "IUPAC International Chemical Identifier Project Page". IUPAC. Archived from the original on 27 May 2012. Retrieved 2012-12-05.
  2. ^ Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. (2013). "InChI - the worldwide chemical structure identifier standard". Journal of Cheminformatics. 5 (1): 7. doi:10.1186/1758-2946-5-7. PMC 3599061. PMID 23343401.
  3. ^ "What on Earth is InChI?". IUPAC 100. Retrieved 10 May 2024.
  4. ^ "The InChI Trust and IUPAC". InChI Trust. Retrieved August 22, 2022.
  5. ^ a b c d e Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. (2015). "InChI, the IUPAC International Chemical Identifier". Journal of Cheminformatics. 7: 23. doi:10.1186/s13321-015-0068-4. PMC 4486400. PMID 26136848.
  6. ^ a b "The IUPAC International Chemical Identifier (InChI)". IUPAC. 5 September 2007. Archived from the original on October 30, 2007. Retrieved 2007-09-18.
  7. ^ E.L. Willighagen (17 September 2011). "InChIKey collision: the DIY copy/pastables". Retrieved 2012-11-06.
  8. ^ Goodman, Jonathan M.; Pletnev, Igor; Thiessen, Paul; Bolton, Evan; Heller, Stephen R. (December 2021). "InChI version 1.06: now more than 99.99% reliable". Journal of Cheminformatics. 13 (1): 40. doi:10.1186/s13321-021-00517-z. PMC 8147039. PMID 34030732.
  9. ^ McNaught, Alan (2006). "The IUPAC International Chemical Identifier:InChl". Chemistry International. Vol. 28, no. 6. IUPAC. Retrieved 2007-09-18.
  10. ^ a b "IUPAC/InChI-Trust Licence for the International Chemical Identifier (InChI) Software" (PDF). IUPAC/InChI-Trust. 2020. Retrieved 2022-08-09.
  11. ^ a b c Heller, Stephen R.; McNaught, Alan; Pletnev, Igor; Stein, Stephen; Tchekhovskoi, Dmitrii (2015). "InChI, the IUPAC International Chemical Identifier". Journal of Cheminformatics. 7.: 23. doi:10.1186/s13321-015-0068-4. PMC 4486400. PMID 26136848.
  12. ^ Pletnev, I.; Erin, A.; McNaught, A.; Blinov, K.; Tchekhovskoi, D.; Heller, S. (2012). "InChIKey collision resistance: An experimental testing". Journal of Cheminformatics. 4 (1): 39. doi:10.1186/1758-2946-4-39. PMC 3558395. PMID 23256896.
  13. ^ "Technical FAQ - InChI Trust". inchi-trust.org. Retrieved 2021-01-08.
  14. ^ "InChI=1/C17H19NO3/c1-18..." Chemspider. Retrieved 2007-09-18.
  15. ^ InChI Resolver, 27 July 2015
  16. ^ a b Grethe, Guenter; Blanke, Gerd; Kraut, Hans; Goodman, Jonathan M. (9 May 2018). "International chemical identifier for reactions (RInChI)". Journal of Cheminformatics. 10 (1): 45. doi:10.1186/s13321-018-0277-8. PMC 4015173. PMID 24152584.
  17. ^ Downloads of InChI Software, accessed Jan. 8, 2021.
  18. ^ Warr, W.A. (2015). "Many InChIs and quite some feat". Journal of Computer-Aided Molecular Design. 29 (8): 681–694. Bibcode:2015JCAMD..29..681W. doi:10.1007/s10822-015-9854-3. PMID 26081259. S2CID 31786997.
  19. ^ Akhondi, S. A.; Kors, J. A.; Muresan, S. (2012). "Consistency of systematic chemical identifiers within and between small-molecule databases". Journal of Cheminformatics. 4 (1): 35. doi:10.1186/1758-2946-4-35. PMC 3539895. PMID 23237381.

External links

Read more information:

Untuk kegunaan lain, lihat TCL. TCL TechnologyNama asliTCL科技JenisPublikIndustriElektronik konsumenDidirikan1981 (Pendirian)1985 (Penubuhan)PendiriTomson Li DongshengKantorpusatHuizhou, Guangdong, TiongkokWilayah operasiSeluruh belahan duniaTokohkunciTomson Dongsheng Li (CEO)ProdukTelevisi, kamera video, telepon selulerPendapatanUS$16,44 miliar (2014)[1]KaryawanSekitar 75.000[1]Situs webtcl.com TCL Technology (Hanzi: TCL科技, TCL kējì), biasa disebut TCL saja, adalah p…

Turn 10 StudiosJenisSubsidierIndustriPermainan video dan komputerHiburan interaktifDidirikan2001KantorpusatRedmond, Washington, Amerika SerikatProdukSerial Forza (2005–sekarang)PemilikMicrosoftKaryawan101–300IndukMicrosoft StudiosSitus webSitus web resmi Turn 10 Studios (disingkat T10 atau Turn 10) adalah sebuah perusahaan pengembang permainan video asal Amerika Serikat yang berada di Redmond, Washington. Perusahaan tersebut didirikan pada 2001 oleh Microsoft Studios untuk mengembangkan seri…

Stomiidae Stomias nebulosus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Stomiiformes Famili: StomiidaeBleeker, 1859[1] Genus Lihat teks Stomiidae atau Ikan naga berduri adalah sebuah keluarga ikan bersirip kipas yang hidup di laut dalam. Ukurannya cukup kecil, biasanya sekitar 15 cm hingga 26 cm. Ikan ini merupakan predator puncak dan memiliki rahang besar yang dipenuhi gigi mirip taring. Mereka juga mampu mengencangkan neurokranium…

Deadpool & WolverineSutradaraShawn LevyProduser Kevin Feige Ryan Reynolds Shawn Levy Ditulis oleh Rhett Reese Paul Wernick Zeb Wells Ryan Reynolds Shawn Levy BerdasarkanDeadpoololeh Fabian NiciezaRob LiefeldPemeran Ryan Reynolds Hugh Jackman Morena Baccarin Brianna Hildebrand Jennifer Garner Penata musikRob SimonsenSinematograferGeorge RichmondPerusahaanproduksi Marvel Studios Maximum Effort 21 Laps Entertainment DistributorWalt Disney StudiosMotion PicturesTanggal rilis 26 Juli 2024&#…

Kalimantan Selatan pada Pekan Olahraga Nasional 2021 Jumlah atlet TBD Pembawa bendera TBD Total medali Emas0 Perak1 Perunggu1 2 (Urutan ke- ) Kalimantan Selatan akan berkompetisi pada Pekan Olahraga Nasional 2021 di Jayapura, Papua. Sebenarnya kontingen ini dijadwalkan untuk bertanding pada 20 Oktober sampai 2 November 2020 namun ditunda ke tanggal 2 sampai 15 Oktober 2021 karena Pandemi COVID-19.[1] Medali Artikel utama: Pekan Olahraga Nasional 2021 Medali Atlet Cabang olahraga Nom…

Timur BekmambetovTimur Bekmambetov pada Maret 2012LahirTimur Nuruakhitovich Bekmambetov25 Juni 1961 (umur 62)Guryev, SSR Kazakh, Uni Soviet (sekarang Kazakhstan)Warga negaraKazakhstanRusiaPekerjaanSutradara, produser, penulis naskah Timur Nuruakhitovich Bekmambetov (Rusia: Тиму́р Нуруахи́тович Бекмамбе́товcode: ru is deprecated [tʲɪˈmur nʊrʊɐˈxʲitəvʲɪt͡ɕ bʲɪkmɐmˈbʲetəf]; bahasa Kazakh: Темір Нұрбақытұлы Бекмамбет…

Opera by Wolfgang Amadeus Mozart KV 38 redirects here. For the tomb of Pharaoh Thutmose I, see KV38. Apollo et HyacinthusOpera by W. A. MozartThe composer in 1777, by an unknown painterLibrettistRufinus WidlLanguageLatinBased onOvid's MetamorphosesPremiere1767 (1767)Benedictine University, Salzburg Apollo et Hyacinthus, K. 38, is an opera written in 1767 by Wolfgang Amadeus Mozart, who was 11 years old at the time. It is Mozart's first true opera (when one considers that Die Schuldigkeit de…

1791 1795 Élections législatives françaises de 1792 749 députés(majorité absolue : 375 sièges) 2 au 19 septembre 1792 Type d’élection Élections législatives Corps électoral et résultats Votants 3 360 000 Marais – Lazare Carnot Voix 1 747 200 51,94 %   5,6 Députés élus 389  44 Montagnards – Maximilien Robespierre Voix 907 200 26,70 %  Députés élus 200 Girondins – Jacques Pi…

County in Nevada, United States County in NevadaEureka CountyCountyEureka County Court HouseLocation within the U.S. state of NevadaNevada's location within the U.S.Coordinates: 39°59′N 116°16′W / 39.98°N 116.27°W / 39.98; -116.27Country United StatesState NevadaFounded1873; 151 years ago (1873)Named forEurekaSeatEurekaLargest communityCrescent ValleyArea • Total4,180 sq mi (10,800 km2) • Land4,176…

Army of the Kingdom of Prussia (1701–1919) For the succeeding German army of the Weimar Republic (1919–1935), see Reichsheer.You can help expand this article with text translated from the corresponding article in German. (October 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather tha…

Cleveland pada tahun 1942. USS Cleveland salah satu dari 27 kapal penjelajah ringan kelas Cleveland milik Angkatan Laut Amerika Serikat. Cleveland mulai ditugaskan pada bulan Juni 1942, dan berlaga di Perang Atlantik serta Teater Pasifik. Seperti para kapal saudarinya, Cleveland dinonaktifkan setelah perang dunia berakhir. Ia pertama bertugas dalam Gugus Tempur Bermuda pada 29 Oktober 1942 dalam invasi sekutu ke Afrika Utara. Kemudian ia bertugas di Atlantik sebentar sebelum berpindah pada 5 Des…

Maa BhoomiSutradaraGoutam GhoseProduserB. Narsing RaoG. RavindranathDitulis olehB. Narsing Rao (permainan latar)Krishan Chander (cerita)Partha Banerjee (dialog)PemeranSai ChandRami ReddyPenata musikVinjamuri Seetha DeviSinematograferKamal NaikPenyuntingRajagopalPerusahaanproduksiSaradhi StudiosTanggal rilis 1980 (1980) Durasi158 menitNegaraIndiaBahasaTelugu Maa Bhoomi (Telugu: మా భూమి, Indonesia: Tanah Kami) adalah sebuah film drama Telugu 1980 yang ditulis dan diproduksi …

بكبسي     الإحداثيات 41°42′19″N 73°55′50″W / 41.705277777778°N 73.930555555556°W / 41.705277777778; -73.930555555556  [1] تاريخ التأسيس 1686  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة دوتشيز  عاصمة لـ مقاطعة دوتشيز  خصائص جغرافية  المساحة 14.811698 ك…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. SMA Negeri 4 BerauSMA Plus Kabupaten BerauInformasiDidirikan2004JenisNegeriAkreditasiAKepala SekolahDrs. Widi Mulyono, M.PdModeratorWiedhodhoJumlah kelasX, XI, XIIJurusan atau peminatanIPA, IPS, BahasaKurikulumKurikulum 2013StatusNegeriAlamatLokas…

نادي النجوم شعار النادي الاسم الكامل نادي النجوم لكرة القدم الاسم المختصر النجوم تأسس عام 2007 (منذ 17 سنة) الملعب ملعب نجوم المستقبل السادس من أكتوبر ، مصر البلد مصر  الدوري دوري الدرجة الثانية المصري 2017–18 الأول الطقم الرسمي الطقم الأساسي الطقم الاحتياطي آخر الأخبار الموسم…

French archeologist Jean-François JarrigeJarrige on the Mehrgarh archaeological site in 1993Born(1940-08-05)5 August 1940Lourdes, Hautes-Pyrénées. FranceDied18 November 2014(2014-11-18) (aged 74)ParisNationalityFrenchOccupation(s)Archaeologist, Museum curatorSpouseCatherine JarrigeChildren2AwardsLegion of Honour,Ordre national du Mérite,Ordre des Palmes académiques,Ordre des Arts et des Lettres,Order of the Rising Sun,Star of PakistanAcademic backgroundEducationÉcole du LouvreAlma mat…

Pour les articles homonymes, voir Tonalité (homonymie). Cercle des quintes donnant les armures des tonalités En musique, une tonalité est le ton appartenant au mode majeur ou au mode mineur utilisé dans une œuvre[1]. Plus généralement, la tonalité est le langage musical (Système tonal) utilisé en occident entre le XVIIIe siècle et le XIXe siècle[1]. Une tonalité se définit comme une gamme de sept notes, désignée par sa tonique (appartenant à l'échelle diatonique) et s…

Place Dauphine Place Dauphine adalah lapangan umum yang terletak di dekat ujung barat Île de la Cité di arondisemen pertama Paris. Itu diprakarsai oleh Henry IV pada 1607, proyek kedua untuk lapangan umum di Paris, yang pertama adalah Place Royale (sekarang Place des Vosges). Dia menamainya untuk putranya, Dauphin dari Prancis dan calon Louis XIII, yang lahir pada 1601.[1] Catatan ^ La Place Dauphine lbsPariwisata di ParisLandmark Arc de Triomphe Arc de Triomphe du Carrousel Arènes de…

American architect Richard FosterBornMarch 21, 1919PittsburghDiedSeptember 13, 2002(2002-09-13) (aged 83)Wilton, ConnecticutNationalityAmericanOccupationArchitect Richard T. Foster (March 21, 1919 – September 13, 2002.[1]) was a modernist architect who worked in the New York City area, and also around Greenwich, Connecticut. Foster is best known for his collaborations with architect Philip Johnson. Life New York State Pavilion, 1964, NYC (seen in 2017) Foster was born in Pittsburg…

Hydra, yang pada umumnya sesil, melekat pada substrat Sesilitas adalah sifat biologis suatu makhluk hidup yang menggambarkan kurangnya sarana untuk menggerakkan diri. Organisme sesil yang tidak memiliki motilitas alami biasanya tidak bergerak. Istilah ini berbeda dari sesilitas dalam botani, yang mengacu pada organisme atau struktur biologis yang melekat langsung pada struktur dasarnya tanpa tangkai. Organisme sesil dapat bergerak melalui kekuatan eksternal (seperti arus air), tetapi biasanya me…

Kembali kehalaman sebelumnya