Share to: share facebook share twitter share wa share telegram print page

Isoelastic utility

Isoelastic utility for different values of When the curve approaches the horizontal axis asymptotically from below with no lower bound.

In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with. The isoelastic utility function is a special case of hyperbolic absolute risk aversion and at the same time is the only class of utility functions with constant relative risk aversion, which is why it is also called the CRRA utility function. In statistics, the same function is called the Box-Cox transformation.

It is

where is consumption, the associated utility, and is a constant that is positive for risk averse agents.[1] Since additive constant terms in objective functions do not affect optimal decisions, the –1 is sometimes omitted in the numerator (although it should be kept if one wishes to preserve mathematical consistency with the limiting case of ; see Special cases below). Since the family contains both power functions and the logarithmic function, it is sometimes called power-log utility.[2]

When the context involves risk, the utility function is viewed as a von Neumann–Morgenstern utility function, and the parameter is the degree of relative risk aversion.

The isoelastic utility function is a special case of the hyperbolic absolute risk aversion (HARA) utility functions, and is used in analyses that either include or do not include underlying risk.

Empirical value

There is substantial debate in the economics and finance literature with respect to the true value of . While extremely high values of (of up to 50 in some models)[3] are needed to explain the behavior of asset prices, most experiments document behavior that is more consistent with values of only slightly greater than 1. For example, Groom and Maddison (2019) estimated the value of to be 1.5 in the United Kingdom,[4] while Evans (2005) estimated its value to be around 1.4 in 20 OECD countries.[5] The utility of income can also be estimated using subjective well-being surveys. Using six national and international such surveys, Layard et al. (2008) found values between 1.19 an 1.34 with a combined estimate of 1.19.[6]

Risk aversion features

This utility function has the feature of constant relative risk aversion. Mathematically this means that is a constant, specifically . In theoretical models this often has the implication that decision-making is unaffected by scale. For instance, in the standard model of one risk-free asset and one risky asset, under constant relative risk aversion the fraction of wealth optimally placed in the risky asset is independent of the level of initial wealth.[7][8]

Special cases

  • : this corresponds to risk neutrality, because utility is linear in c.
  • : by virtue of l'Hôpital's rule, the limit of is as goes to 1:
which justifies the convention of using the limiting value u(c) = ln c when .
  • : this is the case of infinite risk aversion.

See also

References

  1. ^ Ljungqvist, Lars; Sargent, Thomas J. (2000). Recursive Macroeconomic Theory. London: MIT Press. p. 451. ISBN 978-0262194518.
  2. ^ Kale, Jivendra K. (2009). "Growth maximisation and downside protection using power-log utility functions for optimising portfolios with derivatives". International Journal of Computer Applications in Technology. 34 (4): 309. doi:10.1504/IJCAT.2009.024085. ISSN 0952-8091.
  3. ^ Mehra, Rajnish; Prescott, Edward (1985). "The Equity Premium Puzzle". Journal of Monetary Economics. 15: 145–161.
  4. ^ Groom, Ben; Maddison, David (2019). "New Estimates of the Elasticity of Marginal Utility for the UK" (PDF). Environmental and Resource Economics. 72 (4): 1155–1182. doi:10.1007/s10640-018-0242-z. S2CID 254474366.
  5. ^ Evans, David (2005). "The Elasticity of Marginal Utility of Consumption: Estimates for 20 OECD Countries". Fiscal Studies. 26 (2): 197–224. doi:10.1111/j.1475-5890.2005.00010.x. JSTOR 24440019. Retrieved 2021-01-01.
  6. ^ Layard, Richard; Mayraz, Guy; Nickell, Steve (2008). "The Marginal Utility of Income". Journal of Public Economics. 92: 1846–1857. doi:10.1016/j.jpubeco.2008.01.007. Retrieved 2024-03-17.
  7. ^ Arrow, K. J. (1965). "The theory of risk aversion". Aspects of the Theory of Risk Bearing. Helsinki: Yrjo Jahnssonin Saatio. Reprinted in: Essays in the Theory of Risk Bearing. Chicago: Markham. 1971. pp. 90–109. ISBN 978-0841020016.
  8. ^ Pratt, J. W. (1964). "Risk aversion in the small and in the large". Econometrica. 32 (1–2): 122–136. doi:10.2307/1913738. JSTOR 1913738.

Read other articles:

Pre-spawn mortality is a phenomenon where adult coho salmon, Oncorhynchus kisutch, die before spawning when returning to freshwater streams to spawn.[1][2] It is also known as Urban Runoff Mortality Syndrome in more recent studies.[3][4] This occurrence has been observed in much of the Puget Sound region of the Pacific Northwest.[5] During fall migration, salmonids (trout and salmon) pass through urban watersheds which are contaminated with stormwater runo…

Babensham Lambang kebesaranLetak Babensham di Rosenheim NegaraJermanNegara bagianBayernWilayahOberbayernKreisRosenheimPemerintahan • MayorJosef HuberLuas • Total54,33 km2 (2,098 sq mi)Ketinggian488 m (1,601 ft)Populasi (2013-12-31)[1] • Total2.913 • Kepadatan0,54/km2 (1,4/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos83547Kode area telepon08071Pelat kendaraanROSitus webwww.babensham.de Babensham. Babensham a…

Cica-kopi Pomatorhinus Taiwan scimitar babbler (Pomatorhinus musicus)TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliSylviidaeGenusPomatorhinus Horsf., 1821 SpeciesSee textlbs Pomatorhinus adalah genus burung cica-kopi, burung hutan dengan paruh panjang melengkung ke bawah. Ini adalah burung-burung di Asia tropis, dengan jumlah spesies terbanyak terdapat di perbukitan Himalaya . Ini adalah burung darat berukuran sedang dengan ekor terkulai dan bulu lembut. Mereka biasanya b…

Ducato delle Due Siciliefuori corso30 Ducati Stati Regno delle Due Sicilie SimboloD.[1] Frazioni200 tornesi100 grana                             Monete½, 1, 1½, 2, 3, 4, 5, 8, 10 T.5, 10, 20, 60, 120 G.3, 6, 15, 30 D. Entità emittenteBanco delle due Sicilie Periodo di circolazione1816 - 1861[2][3] Sostituita daLira italia…

Artikel ini memuat Islam di Negara Palestina. Untuk Islam di negara Israel, lihat Islam di Israel. Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria…

  لمعانٍ أخرى، طالع أرنولد (توضيح). أرنولد     الإحداثيات 40°34′39″N 79°45′52″W / 40.5775°N 79.764444444444°W / 40.5775; -79.764444444444   [1] تاريخ التأسيس 1781  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة ويستمورلاند  خصائص جغرافية  الم…

All the Hits TourTur bersama oleh Lionel Richie dan Mariah CareyLokasiAmerika UtaraMulai21 Juli 2017Berakhir5 September 2017Putaran1Penampilan22 di Amerika Utara Lionel Richie tur chronology All the Hits, All Night Long(2016) All the Hits Tour(2017) — Mariah Carey tur chronology The Sweet Sweet Fantasy Tour(2016) All the Hits Tour(2017) The Number Ones Tour(2018) All the Hits Tour adalah sebuah tur konser yang akan diselenggarakan oleh musisi dan penyanyi asal Amerika Serikat, Lionel…

Scottish Premier Division 1994-1995 Competizione Scottish Premier Division Sport Calcio Edizione 98ª Organizzatore SFL Date dal 13 agosto 1994al 13 maggio 1995 Luogo  Scozia Partecipanti 10 Formula Girone all'italiana A/R/A/R Risultati Vincitore Rangers(45º titolo) Retrocessioni Dundee Utd Statistiche Miglior giocatore Brian Laudrup (SPFA, SFWA) Miglior marcatore Tommy Coyne (16) Incontri disputati 180 Gol segnati 453 (2,52 per incontro) Cronologia della competizion…

Questa voce sull'argomento scrittori portoghesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Statua dedicata a Bandarra, a Trancoso (Portogallo), dello scultore Lopes Cardoso Gonçalo Annes Bandarra (Trancoso, 1500 – Trancoso, 1556) è stato uno scrittore portoghese. Indice 1 Le Trovas di Bandarra 2 Note 3 Bibliografia 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Le Trovas di Bandarra Calzolaio di professione, Bandarra è soprattutto cono…

Торговые ряды (БРУМ)  (укр.) (рус. на Торговой площади  (укр.) (рус. Евреи в Белой Церкви поселились ещё в XVI веке. Это были преимущественно мелкие торговцы. В 1648 году значительная часть еврейской общины города была истреблена или изгнана казаками Хмельницкого. В…

De Oude Meerdijk Informasi stadionNama lamaMeerdijk Stadion (1977–2001)Univé Stadion (2001–2013)JENS Vesting (2013-2017)LokasiLokasiEmmen, BelandaKoordinat52°46′29″N 6°56′44″E / 52.77472°N 6.94556°E / 52.77472; 6.94556Koordinat: 52°46′29″N 6°56′44″E / 52.77472°N 6.94556°E / 52.77472; 6.94556KonstruksiDibuka1977Direnovasi2001Data teknisKapasitas8,600PemakaiFC EmmenSunting kotak info • L • BBantuan penggunaa…

Strada statale 149di MontecassinoLocalizzazioneStato Italia Regioni Lazio Province Frosinone DatiClassificazioneStrada statale InizioCassino FineAbbazia di Montecassino Lunghezza8,738[1] km Data apertura1952 Provvedimento di istituzioneD.P.R. 1º luglio 1952, n. 1237[2] GestoreTratte ANAS: nessuna (dal 2002 la gestione è passata alla Regione Lazio che ha poi ulteriormente devoluto le competenze alla Provincia di Frosinone; dal 2007 la gestione è passata alla soci…

Cemetery in California This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rose Hills Memorial Park – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) Rose Hills Memorial ParkGate 1 entrance signDetailsEstablished1914LocationWhittier, CaliforniaCountryUnited S…

Музей природы и экологии Республики БеларусьМузей прыроды і экалогіі Рэспублікі Беларусь Дата основания 25 июля 1983 года Дата открытия Февраль 1992 года Местонахождение Минск Адрес г. Минск, улица Карла Маркса, д.12, каб.11 Сайт pryroda.histmuseum.by/ru/  Медиафайлы на Викискладе Музей п…

  提示:此条目页的主题不是沙巴民族统一机构。   提示:此条目页的主题不是卡达山杜顺人统一机构 (1961)。 此條目可参照英語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 …

Segnitz Lambang kebesaranLetak Segnitz di Kitzingen NegaraJermanNegara bagianBayernWilayahUnterfrankenKreisKitzingenMunicipal assoc.Marktbreit Pemerintahan • MayorRudolf Löhr (FW)Luas • Total2,76 km2 (107 sq mi)Ketinggian181 m (594 ft)Populasi (2013-12-31)[1] • Total856 • Kepadatan3,1/km2 (8,0/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97340Kode area telepon09332Pelat kendaraanKTSitus webwww.kitzingen.de…

Association football club in Latvia Football clubSpartaks JūrmalaFull nameJūrmalas Futbola un Peldēšanas skola/Spartaks (Jūrmala Swimming and Football School/Spartaks)Nickname(s)Sarkanbaltie (Red-whites)Founded2007; 17 years ago (2007)GroundSloka StadiumCapacity2,500ChairmanSpartaks MelkumjansManagerOskars KļavaLeagueVirslīga20228thWebsiteClub website Home colours Away colours Current season FK Spartaks is a Latvian football club that is based in Sloka, Jūrmala. In 2012…

Salah satu gejala Wabah Yustinianus adalah nekrosis tangan. Wabah Yustinianus adalah pandemik yang menyerang Kekaisaran Romawi Timur (Kekaisaran Bizantium), termasuk ibu kotanya Konstantinopel, pada tahun 541–542 M. Menurut penelitian, penyebabnya adalah Yersinia pestis, organisme yang menyebabkan penyakit pes.[1][2] Pengaruh sosial dan kultural dari wabah ini dapat disamakan dengan Kematian Hitam. Dalam pandangan sejarawan abad keenam, cakupan wabahnya hampir seluruh dunia, te…

County in Colorado, United States Not to be confused with the town of Moffat, Colorado. County in ColoradoMoffat CountyCountyRound Bottom Area in Moffat County, ColoradoLocation within the U.S. state of ColoradoColorado's location within the U.S.Coordinates: 40°37′N 108°12′W / 40.61°N 108.2°W / 40.61; -108.2Country United StatesState ColoradoFoundedFebruary 27, 1911Named forDavid H. MoffatSeatCraigLargest cityCraigArea • Total4,751 sq…

Manufacturer of equipment for climbing, skiing, and mountain sports This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Black Diamond Equipment – news · newspapers · books · scholar · JSTOR (March 2016) (Learn how and when to remove this message) Black Diamond EquipmentCompany typePublicTraded asNasdaq: CLARIn…

Kembali kehalaman sebelumnya