Share to: share facebook share twitter share wa share telegram print page

Isotopes of antimony

Isotopes of antimony (51Sb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
121Sb 57.2% stable
123Sb 42.8% stable
125Sb synth 2.7576 y β 125Te
Standard atomic weight Ar°(Sb)

Antimony (51Sb) occurs in two stable isotopes, 121Sb and 123Sb. There are 37 artificial radioactive isotopes, the longest-lived of which are 125Sb, with a half-life of 2.75856 years; 124Sb, with a half-life of 60.2 days; and 126Sb, with a half-life of 12.35 days. All other isotopes have half-lives less than 4 days, most less than an hour. There are also many isomers, the longest-lived of which is 120m1Sb with a half-life of 5.76 days.

With the exception of beryllium, antimony is the lightest element observed to have isotopes capable of undergoing alpha decay, with the isotope 104Sb being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5][n 6]
Spin and
parity[1]
[n 7][n 8]
Natural abundance (mole fraction)
Excitation energy[n 8] Normal proportion[1] Range of variation
104Sb 51 53 103.93634(11)# 470(130) ms β+? 104Sn
p (<7%) 103Sn
β+, p (<7%) 103In
α? 100In
105Sb 51 54 104.931277(23) 1.12(16) s β+ (>99.9%) 105Sn (5/2+)
p (<0.1%) 104Sn
β+, p? 104In
106Sb 51 55 105.9286380(80) 0.6(2) s β+ 106Sn (2+)
106mSb 103.5(3) keV 226(14) ns IT 106Sb (4+)
107Sb 51 56 106.9241506(45) 4.0(2) s β+ 107Sn 5/2+#
108Sb 51 57 107.9222267(59) 7.4(3) s β+ 108Sn (4+)
109Sb 51 58 108.9181412(57) 17.2(5) s β+ 109Sn 5/2+#
110Sb 51 59 109.9168543(64) 23.6(3) s β+ 110Sn (3+)
111Sb 51 60 110.9132182(95) 75(1) s β+ 111Sn (5/2+)
112Sb 51 61 111.912400(19) 53.5(6) s β+ 112Sn (3+)
112mSb 825.9(4) keV 536(22) ns IT 112Sb (8−)
113Sb 51 62 112.909375(18) 6.67(7) min β+ 113Sn 5/2+
114Sb 51 63 113.909289(21) 3.49(3) min β+ 114Sn 3+
114mSb 495.5(7) keV 219(12) μs IT 114Sb (8−)
115Sb 51 64 114.906598(17) 32.1(3) min β+ 115Sn 5/2+
115mSb 2796.26(9) keV 159(3) ns IT 115Sb (19/2)−
116Sb 51 65 115.9067927(55) 15.8(8) min β+ 116Sn 3+
116m1Sb 93.99(5) keV 194(4) ns IT 116Sb 1+
116m2Sb 390(40) keV 60.3(6) min β+ 116Sn 8−
117Sb 51 66 116.9048415(91) 2.97(2) h β+ 117Sn 5/2+
117m1Sb 3130.76(19) keV 355(17) μs IT 117Sb (25/2)+
117m2Sb 3230.7(2) keV 290(5) ns IT 117Sb (23/2−)
118Sb 51 67 117.9055322(32) 3.6(1) min β+ 118Sn 1+
118m1Sb 50.814(21) keV 20.6(6) μs IT 118Sb 3+
118m2Sb 250(6) keV 5.01(3) h β+ 118Sn 8−
119Sb 51 68 118.9039441(75) 38.19(22) h EC 119Sn 5/2+
119m1Sb 2553.6(3) keV 130(3) ns IT 119Sb 19/2−
119m2Sb 2841.7(4) keV 835(81) ms IT 119Sb 25/2+
120Sb 51 69 119.9050803(77) 15.89(4) min β+ 120Sn 1+
120m1Sb[n 9] 0(100)# keV 5.76(2) d β+ 120Sn 8−
120m2Sb 78.16(5) keV 246(2) ns IT 120Sb (3+)
120m3Sb 2328(100)# keV 400(8) ns IT 120Sb 13+
121Sb[n 10] 51 70 120.9038114(27) Stable 5/2+ 0.5721(5)
121mSb 2751(17) keV 179(6) μs IT 121Sb (25/2+)
122Sb 51 71 121.9051693(27) 2.7238(2) d β (97.59%) 122Te 2−
β+ (2.41%) 122Sn
122m1Sb 61.4131(5) keV 1.86(8) μs IT 122Sb 3+
122m2Sb 137.4726(8) keV 0.53(3) ms IT 122Sb 5+
122m3Sb 163.5591(17) keV 4.191(3) min IT 122Sb 8−
123Sb[n 10] 51 72 122.9042153(15) Stable 7/2+ 0.4279(5)
123m1Sb 2237.8(3) keV 214(3) ns IT 123Sb 19/2−
123m2Sb 2613.4(4) keV 65(1) μs IT 123Sb 23/2+
124Sb 51 73 123.9059371(15) 60.20(3) d β 124Te 3−
124m1Sb 10.8627(8) keV 93(5) s IT (75%) 124Sb 5+
β (25%) 124Te
124m2Sb 36.8440(14) keV 20.2(2) min IT 124m1Sb (8)−
124m3Sb 40.8038(7) keV 3.2(3) μs IT 124Sb (3+)
125Sb 51 74 124.9052543(27) 2.7576(11) y β 125Te 7/2+
125m1Sb 1971.25(20) keV 4.1(2) μs IT 125Sb 15/2−
125m2Sb 2112.1(3) keV 28.5(5) μs IT 125Sb 19/2−
125m3Sb 2471.0(4) keV 277.0(64) ns IT 125Sb (23/2)+
126Sb 51 75 125.907253(34) 12.35(6) d β 126Te 8−
126m1Sb 17.7(3) keV 19.15(8) min β (86%) 126Te 5+
IT (14%) 126Sb
126m2Sb 40.4(3) keV ~11 s IT 126m1Sb 3−
126m3Sb 104.6(3) keV 553(5) ns IT 126Sb 3+
126m4Sb 1810.7(17) keV 90(16) ns IT 126Sb (13+)
127Sb 51 76 126.9069256(55) 3.85(5) d β 127Te 7/2+
127m1Sb 1920.19(21) keV 11.7(1) μs IT 127Sb 15/2−
127m2Sb 2324.7(4) keV 269(5) ns IT 127Sb 23/2+
128Sb 51 77 127.909146(20) 9.05(4) h β 128Te 8−
128m1Sb[n 9] 10(6) keV 10.41(18) min β (96.4%) 128Te 5+
IT (3.6%) 128Sb
128m2Sb 1617.3(7) keV 500(20) ns IT 128Sb (11+)
128m3Sb 1769.9(12) keV 217(7) ns IT 128Sb (13+)
129Sb 51 78 128.909147(23) 4.366(26) h β 129Te 7/2+
129m1Sb 1851.31(6) keV 17.7(1) min β (85%) 129Te 19/2−
IT (15%) 129Sb
129m2Sb 1861.06(5) keV 2.23(17) μs IT 129Sb 15/2−
129m3Sb 2139.4(3) keV 0.89(3) μs IT 129Sb 23/2+
130Sb 51 79 129.911663(15) 39.5(8) min β 130Te 8−
130m1Sb 4.80(20) keV 6.3(2) min β 130Te 4+
130m2Sb 84.67(4) keV 800(100) ns IT 130Sb 6−
130m3Sb 1508(1) keV 600(15) ns IT 130Sb (11+)
130m4Sb 1544.7(5) keV 1.25(1) μs IT 130Sb (13+)
131Sb 51 80 130.9119893(22) 23.03(4) min β 131Te 7/2+
131m1Sb 1676.06(6) keV 64.2(26) μs IT 131Sb 15/2−
131m2Sb 1687.2(9) keV 4.3(8) μs IT 131Sb 19/2−
131m3Sb 2165.6(15) keV 0.97(3) μs IT 131Sb 23/2+
132Sb 51 81 131.9145141(29)[5] 2.79(7) min β 132Te (4)+
132m1Sb 139.3(20) keV[5] 4.10(5) min β 132Te (8−)
132m2Sb 254.5(3) keV 102(4) ns IT 132Sb (6−)
133Sb 51 82 132.9152721(34) 2.34(5) min β 133Te (7/2+)
133mSb 4541(9) keV 16.54(19) μs IT 133Sb (21/2+)
134Sb 51 83 133.9205373(33) 674(4) ms β 134Te (0-)
β, n? 133Te
134mSb 279(1) keV 10.01(4) s β (99.91%) 134Te (7−)
β, n (0.088%) 133Te
135Sb 51 84 134.9251844(28) 1.668(9) s β (80.9%) 135Te (7/2+)
β, n (19.1%) 134Te
136Sb 51 85 135.9307490(63) 0.923(14) s β (75.2%) 136Te (1−)
β, n (24.7%) 135Te
β, 2n (0.14%) 134Te
136mSb 269.3(5) keV 570(5) ns IT 136Sb (6−)
137Sb 51 86 136.935523(56) 497(21) ms β (51%) 137Te 7/2+#
β, n (49%) 136Te
β, 2n? 135Te
138Sb 51 87 137.94133(32)# 333(7) ms β, n (72%) 137Te (3−)
β (28%) 138Te
β, 2n? 136Te
139Sb 51 88 138.94627(43)# 182(9) ms β, n (90%) 138Te 7/2+#
β (10%) 139Te
β, 2n? 137Te
140Sb 51 89 139.95235(64)# 170(6) ms β (69%) 140Te (3−)
β, n (23%) 139Te
β, 2n (7.6%) 138Te
140mSb 330(30)# keV 41(8) μs IT 140Sb (6−,7−)
141Sb 51 90 140.95755(54)# 103(29) ms β 141Te 7/2+#
β, n? 140Te
β, 2n? 139Te
142Sb 51 91 141.96392(32)# 80(50) ms β 142Te
β, n? 141Te
β, 2n? 130Te
This table header & footer:
  1. ^ mSb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^ a b Order of ground state and isomer is uncertain.
  10. ^ a b Fission product

References

  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Antimony". CIAAW. 1993.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
Kembali kehalaman sebelumnya