Joos–Weinberg equation
Equation for arbitrary spin particles
In relativistic quantum mechanics and quantum field theory , the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j , an integer for bosons (j = 1, 2, 3 ... ) or half-integer for fermions (j = 1 ⁄2 , 3 ⁄2 , 5 ⁄2 ... ). The solutions to the equations are wavefunctions , mathematically in the form of multi-component spinor fields . The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature (see references ).
It is named after Hans H. Joos and Steven Weinberg , found in the early 1960s.[ 1] [ 2] [ 3]
Statement
Introducing a 2(2j + 1) × 2(2j + 1) matrix;[ 2]
γ γ -->
μ μ -->
1
μ μ -->
2
⋯ ⋯ -->
μ μ -->
2
j
{\displaystyle \gamma ^{\mu _{1}\mu _{2}\cdots \mu _{2j}}}
symmetric in any two tensor indices, which generalizes the gamma matrices in the Dirac equation,[ 3] [ 4] the equation is[ 5]
[
(
i
ℏ ℏ -->
)
2
j
γ γ -->
μ μ -->
1
μ μ -->
2
⋯ ⋯ -->
μ μ -->
2
j
∂ ∂ -->
μ μ -->
1
∂ ∂ -->
μ μ -->
2
⋯ ⋯ -->
∂ ∂ -->
μ μ -->
2
j
+
(
m
c
)
2
j
]
Ψ Ψ -->
=
0
{\displaystyle [(i\hbar )^{2j}\gamma ^{\mu _{1}\mu _{2}\cdots \mu _{2j}}\partial _{\mu _{1}}\partial _{\mu _{2}}\cdots \partial _{\mu _{2j}}+(mc)^{2j}]\Psi =0}
or
[
γ γ -->
μ μ -->
1
μ μ -->
2
⋯ ⋯ -->
μ μ -->
2
j
P
μ μ -->
1
P
μ μ -->
2
⋯ ⋯ -->
P
μ μ -->
2
j
+
(
m
c
)
2
j
]
Ψ Ψ -->
=
0
{\displaystyle [\gamma ^{\mu _{1}\mu _{2}\cdots \mu _{2j}}P_{\mu _{1}}P_{\mu _{2}}\cdots P_{\mu _{2j}}+(mc)^{2j}]\Psi =0}
4
Lorentz group structure
For the JW equations the representation of the Lorentz group is[ 6]
D
J
W
=
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
.
{\displaystyle D^{\mathrm {JW} }=D^{(j,0)}\oplus D^{(0,j)}.}
This representation has definite spin j . It turns out that a spin j particle in this representation satisfy field equations too. These equations are very much like the Dirac equations. It is suitable when the symmetries of charge conjugation , time reversal symmetry , and parity are good.
The representations D (j , 0) and D (0, j ) can each separately represent particles of spin j . A state or quantum field in such a representation would satisfy no field equation except the Klein–Gordon equation.
Lorentz covariant tensor description of Weinberg–Joos states
The six-component spin-1 representation space,
D
J
W
=
D
(
1
,
0
)
⊕ ⊕ -->
D
(
0
,
1
)
{\displaystyle D^{\mathrm {JW} }=D^{(1,0)}\oplus D^{(0,1)}}
can be labeled by a pair of anti-symmetric Lorentz indexes, [αβ ] , meaning that it transforms as an antisymmetric Lorentz tensor of second rank
B
[
α α -->
β β -->
]
,
{\displaystyle B_{[\alpha \beta ]},}
i.e.
B
[
α α -->
β β -->
]
∼ ∼ -->
D
(
1
,
0
)
⊕ ⊕ -->
D
(
0
,
1
)
.
{\displaystyle B_{[\alpha \beta ]}\sim D^{(1,0)}\oplus D^{(0,1)}.}
The j -fold Kronecker product T [α 1 β 1 ]...[αj βj ] of B [αβ ]
T
[
α α -->
1
β β -->
1
]
⋯ ⋯ -->
[
α α -->
j
β β -->
j
]
=
B
[
α α -->
1
β β -->
1
]
⊗ ⊗ -->
⋯ ⋯ -->
⊗ ⊗ -->
B
[
α α -->
j
β β -->
j
]
=
⨂ ⨂ -->
i
=
1
j
B
[
α α -->
i
β β -->
i
]
,
{\displaystyle T_{[\alpha _{1}\beta _{1}]\cdots [\alpha _{j}\beta _{j}]}=B_{[\alpha _{1}\beta _{1}]}\otimes \cdots \otimes B_{[\alpha _{j}\beta _{j}]}=\bigotimes _{i=1}^{j}B_{[\alpha _{i}\beta _{i}]},}
8A
decomposes into a finite series of Lorentz-irreducible representation spaces according to
⨂ ⨂ -->
i
=
1
j
(
D
i
(
1
,
0
)
⊕ ⊕ -->
D
i
(
0
,
1
)
)
→ → -->
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
⊕ ⊕ -->
D
(
j
,
j
)
⊕ ⊕ -->
⋯ ⋯ -->
⊕ ⊕ -->
D
(
j
k
,
j
l
)
⊕ ⊕ -->
D
(
j
l
,
j
k
)
⊕ ⊕ -->
⋯ ⋯ -->
⊕ ⊕ -->
D
(
0
,
0
)
,
{\displaystyle \bigotimes _{i=1}^{j}\left(D_{i}^{(1,0)}\oplus D_{i}^{(0,1)}\right)\to D^{(j,0)}\oplus D^{(0,j)}\oplus D^{(j,j)}\oplus \cdots \oplus D^{(j_{k},j_{l})}\oplus D^{(j_{l},j_{k})}\oplus \cdots \oplus D^{(0,0)},}
and necessarily contains a
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
{\displaystyle D^{(j,0)}\oplus D^{(0,j)}}
sector. This sector can instantly be identified by means of a momentum independent projector operator P (j ,0) , designed on the basis of C (1) , one of the Casimir elements (invariants)[ 7] of the Lie algebra of the Lorentz group , which are defined as,
{
[
C
(
1
)
]
A
B
=
1
4
[
M
μ μ -->
ν ν -->
]
A
C
[
M
μ μ -->
ν ν -->
]
C
B
[
C
(
2
)
]
A
B
=
1
4
ε ε -->
μ μ -->
ν ν -->
λ λ -->
η η -->
[
M
μ μ -->
ν ν -->
]
A
C
[
M
λ λ -->
η η -->
]
C
B
A
,
B
,
C
=
1
,
… … -->
,
(
2
j
1
+
1
)
(
2
j
2
+
1
)
{\displaystyle {\begin{cases}\left[C^{(1)}\right]_{AB}={\frac {1}{4}}{\left[M^{\mu \nu }\right]_{A}}^{C}\left[M_{\mu \nu }\right]_{CB}\\[6pt]\left[C^{(2)}\right]_{AB}={\frac {1}{4}}\varepsilon _{\mu \nu \lambda \eta }{\left[M^{\mu \nu }\right]_{A}}^{C}\left[M^{\lambda \eta }\right]_{CB}\end{cases}}\qquad A,B,C=1,\ldots ,(2j_{1}+1)(2j_{2}+1)}
8B
where Mμν are constant (2j 1 +1)(2j 2 +1) × (2j 1 +1)(2j 2 +1) matrices defining the elements of the Lorentz algebra within the
D
(
j
1
,
j
2
)
⊕ ⊕ -->
D
(
j
2
,
j
1
)
{\displaystyle D^{(j_{1},j_{2})}\oplus D^{(j_{2},j_{1})}}
representations. The Capital Latin letter labels indicate[ 8] the finite dimensionality of the representation spaces under consideration which describe the internal angular momentum (spin ) degrees of freedom.
The representation spaces
D
(
j
1
,
j
2
)
⊕ ⊕ -->
D
(
j
2
,
j
1
)
{\displaystyle D^{(j_{1},j_{2})}\oplus D^{(j_{2},j_{1})}}
are eigenvectors to C (1) in (8B ) according to,
C
(
1
)
[
D
(
j
1
,
j
2
)
⊕ ⊕ -->
D
(
j
2
,
j
1
)
]
=
(
j
1
(
j
1
+
1
)
+
j
2
(
j
2
+
1
)
)
[
D
(
j
1
,
j
2
)
⊕ ⊕ -->
D
(
j
2
,
j
1
)
]
,
{\displaystyle C^{(1)}\left[D^{(j_{1},j_{2})}\oplus D^{(j_{2},j_{1})}\right]=\left(j_{1}(j_{1}+1)+j_{2}(j_{2}+1)\right)\left[D^{(j_{1},j_{2})}\oplus D^{(j_{2},j_{1})}\right],}
Here we define:
λ λ -->
(
j
1
,
j
2
)
(
1
)
=
j
1
(
j
1
+
1
)
+
j
2
(
j
2
+
1
)
,
{\displaystyle \lambda _{(j_{1},j_{2})}^{(1)}=j_{1}(j_{1}+1)+j_{2}(j_{2}+1),}
to be the C (1) eigenvalue of the
D
(
j
1
,
j
2
)
⊕ ⊕ -->
D
(
j
2
,
j
1
)
{\displaystyle D^{(j_{1},j_{2})}\oplus D^{(j_{2},j_{1})}}
sector. Using this notation we define the projector operator, P (j ,0) in terms of C (1) :[ 8]
[
P
(
j
,
0
)
]
[
α α -->
1
β β -->
1
]
⋯ ⋯ -->
[
α α -->
j
β β -->
j
]
[
ρ ρ -->
1
σ σ -->
1
]
⋯ ⋯ -->
[
ρ ρ -->
j
σ σ -->
j
]
=
[
∏ ∏ -->
k
,
l
(
C
(
1
)
− − -->
λ λ -->
(
j
k
,
j
l
)
(
1
)
λ λ -->
(
j
,
0
)
(
1
)
− − -->
λ λ -->
(
j
k
,
j
l
)
(
1
)
)
]
[
α α -->
1
β β -->
1
]
⋯ ⋯ -->
[
α α -->
j
β β -->
j
]
[
ρ ρ -->
1
σ σ -->
1
]
⋯ ⋯ -->
[
ρ ρ -->
j
σ σ -->
j
]
.
{\displaystyle {\left[P^{(j,0)}\right]_{\left[\alpha _{1}\beta _{1}\right]\cdots \left[\alpha _{j}\beta _{j}\right]}}^{\left[\rho _{1}\sigma _{1}\right]\cdots \left[\rho _{j}\sigma _{j}\right]}={\left[\prod _{k,l}\left({\frac {C^{(1)}-\lambda _{(j_{k},j_{l})}^{(1)}}{\lambda _{(j,\,0)}^{(1)}-\lambda _{(j_{k},j_{l})}^{(1)}}}\right)\right]_{\left[\alpha _{1}\beta _{1}\right]\cdots \left[\alpha _{j}\beta _{j}\right]}}^{\left[\rho _{1}\sigma _{1}\right]\cdots \left[\rho _{j}\sigma _{j}\right]}.}
8C
Such projectors can be employed to search through T [α 1 β 1 ]...[αj βj ] for
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
,
{\displaystyle D^{(j,0)}\oplus D^{(0,j)},}
and exclude all the rest. Relativistic second order wave equations for any j are then straightforwardly obtained in first identifying the
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
{\displaystyle D^{(j,0)}\oplus D^{(0,j)}}
sector in T [α 1 β 1 ]...[αj βj ] in (8A ) by means of the Lorentz projector in (8C ) and then imposing on the result the mass shell condition.
This algorithm is free from auxiliary conditions. The scheme also extends to half-integer spins,
s
=
j
+
1
2
{\displaystyle s=j+{\tfrac {1}{2}}}
in which case the Kronecker product of T [α 1 β 1 ]...[αj βj ] with the Dirac spinor,
D
(
1
2
,
0
)
⊕ ⊕ -->
D
(
0
,
1
2
)
{\displaystyle D^{\left({\frac {1}{2}},0\right)}\oplus D^{\left(0,{\frac {1}{2}}\right)}}
has to be considered. The choice of the totally antisymmetric Lorentz tensor of second rank, B [αi βi ] , in the above equation (8A ) is only optional. It is possible to start with multiple Kronecker products of totally symmetric second rank Lorentz tensors, Aαi βi . The latter option should be of interest in theories where high-spin
D
(
j
,
0
)
⊕ ⊕ -->
D
(
0
,
j
)
{\displaystyle D^{(j,0)}\oplus D^{(0,j)}}
Joos–Weinberg fields preferably couple to symmetric tensors, such as the metric tensor in gravity.
An Example
Source:[ 8]
The
(
3
2
,
0
)
⊕ ⊕ -->
(
0
,
3
2
)
{\displaystyle \left({\tfrac {3}{2}},0\right)\oplus \left(0,{\tfrac {3}{2}}\right)}
transforming in the Lorenz tensor spinor of second rank,
ψ ψ -->
[
μ μ -->
ν ν -->
]
=
[
(
1
,
0
)
⊕ ⊕ -->
(
0
,
1
)
]
⊗ ⊗ -->
[
(
1
2
,
0
)
⊕ ⊕ -->
(
0
,
1
2
)
]
.
{\displaystyle \psi _{[\mu \nu ]}=[(1,0)\oplus (0,1)]\otimes \left[\left({\tfrac {1}{2}},0\right)\oplus \left(0,{\tfrac {1}{2}}\right)\right].}
The Lorentz group generators within this representation space are denoted by
[
M
μ μ -->
ν ν -->
A
T
S
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
,
{\displaystyle \left[M_{\mu \nu }^{ATS}\right]_{[\alpha \beta ][\gamma \delta ]},}
and given by:
[
M
μ μ -->
ν ν -->
A
T
S
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
=
[
M
μ μ -->
ν ν -->
A
T
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
1
S
+
1
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
[
M
μ μ -->
ν ν -->
S
]
,
{\displaystyle \left[M_{\mu \nu }^{ATS}\right]_{[\alpha \beta ][\gamma \delta ]}=\left[M_{\mu \nu }^{AT}\right]_{[\alpha \beta ][\gamma \delta ]}{\mathbf {1} }^{S}+{\mathbf {1} }_{[\alpha \beta ][\gamma \delta ]}\,\,\left[M_{\mu \nu }^{S}\right],}
1
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
=
1
2
(
g
α α -->
γ γ -->
g
β β -->
δ δ -->
− − -->
g
α α -->
δ δ -->
g
β β -->
γ γ -->
)
,
{\displaystyle \mathbf {1} _{[\alpha \beta ][\gamma \delta ]}={\tfrac {1}{2}}\left(g_{\alpha \gamma }g_{\beta \delta }-g_{\alpha \delta }g_{\beta \gamma }\right),}
M
μ μ -->
ν ν -->
S
=
1
2
σ σ -->
μ μ -->
ν ν -->
=
i
4
[
γ γ -->
μ μ -->
,
γ γ -->
ν ν -->
]
,
{\displaystyle M_{\mu \nu }^{S}={\tfrac {1}{2}}\sigma _{\mu \nu }={\frac {i}{4}}[\gamma _{\mu },\gamma _{\nu }],}
where 1 [αβ ][γδ ] stands for the identity in this space, 1 S and MS μν are the respective unit operator and the Lorentz algebra elements within the Dirac space, while γμ are the standard gamma matrices . The [MAT μν ][αβ ][γδ ] generators express in terms of the generators in the four-vector,
[
M
μ μ -->
ν ν -->
V
]
α α -->
β β -->
=
i
(
g
α α -->
μ μ -->
g
β β -->
ν ν -->
− − -->
g
α α -->
ν ν -->
g
β β -->
μ μ -->
)
,
{\displaystyle \left[M_{\mu \nu }^{V}\right]_{\alpha \beta }=i\left(g_{\alpha \mu }g_{\beta \nu }-g_{\alpha \nu }g_{\beta \mu }\right),}
as
[
M
μ μ -->
ν ν -->
A
T
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
=
− − -->
2
⋅ ⋅ -->
1
[
α α -->
β β -->
]
[
κ κ -->
σ σ -->
]
[
M
μ μ -->
ν ν -->
V
]
σ σ -->
ρ ρ -->
1
[
ρ ρ -->
κ κ -->
]
[
γ γ -->
δ δ -->
]
.
{\displaystyle \left[M_{\mu \nu }^{AT}\right]_{[\alpha \beta ][\gamma \delta ]}=-2\cdot {\mathbf {1} _{[\alpha \beta ]}}^{[\kappa \sigma ]}{\left[M_{\mu \nu }^{V}\right]_{\sigma }}^{\rho }{\mathbf {1} }_{[\rho \kappa ][\gamma \delta ]}.}
Then, the explicit expression for the Casimir invariant C (1) in (8B ) takes the form,
[
C
(
1
)
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
=
− − -->
1
8
(
σ σ -->
α α -->
β β -->
σ σ -->
γ γ -->
δ δ -->
− − -->
σ σ -->
γ γ -->
δ δ -->
σ σ -->
α α -->
β β -->
− − -->
22
⋅ ⋅ -->
1
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
)
,
{\displaystyle \left[C^{(1)}\right]_{[\alpha \beta ][\gamma \delta ]}=-{\frac {1}{8}}\left(\sigma _{\alpha \beta }\sigma _{\gamma \delta }-\sigma _{\gamma \delta }\sigma _{\alpha \beta }-22\cdot \mathbf {1} _{[\alpha \beta ][\gamma \delta ]}\right),}
and the Lorentz projector on (3/2,0)⊕(0,3/2) is given by,
[
P
(
3
2
,
0
)
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
=
1
8
(
σ σ -->
α α -->
β β -->
σ σ -->
γ γ -->
δ δ -->
+
σ σ -->
γ γ -->
δ δ -->
σ σ -->
α α -->
β β -->
)
− − -->
1
12
σ σ -->
α α -->
β β -->
σ σ -->
γ γ -->
δ δ -->
.
{\displaystyle \left[P^{\left({\frac {3}{2}},0\right)}\right]_{[\alpha \beta ][\gamma \delta ]}={\frac {1}{8}}\left(\sigma _{\alpha \beta }\sigma _{\gamma \delta }+\sigma _{\gamma \delta }\sigma _{\alpha \beta }\right)-{\frac {1}{12}}\sigma _{\alpha \beta }\sigma _{\gamma \delta }.}
In effect, the (3/2,0)⊕(0,3/2) degrees of freedom, denoted by
[
w
± ± -->
(
3
2
,
0
)
(
p
,
3
2
,
λ λ -->
)
]
[
γ γ -->
δ δ -->
]
{\displaystyle \left[w_{\pm }^{\left({\frac {3}{2}},0\right)}\left({\mathbf {p} },{\tfrac {3}{2}},\lambda \right)\right]^{[\gamma \delta ]}}
are found to solve the following second order equation,
(
[
P
(
3
2
,
0
)
]
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
p
2
− − -->
m
2
⋅ ⋅ -->
1
[
α α -->
β β -->
]
[
γ γ -->
δ δ -->
]
)
[
w
± ± -->
(
3
2
,
0
)
(
p
,
3
2
,
λ λ -->
)
]
[
γ γ -->
δ δ -->
]
=
0.
{\displaystyle \left({\left[P^{\left({\frac {3}{2}},0\right)}\right]^{[\alpha \beta ]}}_{[\gamma \delta ]}p^{2}-m^{2}\cdot {{\mathbf {1} }^{[\alpha \beta ]}}_{[\gamma \delta ]}\right)\left[w_{\pm }^{\left({\frac {3}{2}},0\right)}\left({\mathbf {p} },{\tfrac {3}{2}},\lambda \right)\right]^{[\gamma \delta ]}=0.}
Expressions for the solutions can be found in.[ 8]
See also
References
^ Joos, Hans (1962). "Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik" . Fortschritte der Physik (in German). 10 (3): 65– 146. Bibcode :1962ForPh..10...65J . doi :10.1002/prop.2180100302 .
^ a b Weinberg, S. (1964). "Feynman Rules for Any spin" (PDF) . Phys. Rev . 133 (5B): B1318 – B1332 . Bibcode :1964PhRv..133.1318W . doi :10.1103/PhysRev.133.B1318 . Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-28 . ; Weinberg, S. (1964). "Feynman Rules for Any spin. II. Massless Particles" (PDF) . Phys. Rev . 134 (4B): B882 – B896 . Bibcode :1964PhRv..134..882W . doi :10.1103/PhysRev.134.B882 . Archived from the original (PDF) on 2022-03-09. Retrieved 2016-12-28 . ; Weinberg, S. (1969). "Feynman Rules for Any spin. III" (PDF) . Phys. Rev . 181 (5): 1893– 1899. Bibcode :1969PhRv..181.1893W . doi :10.1103/PhysRev.181.1893 . Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-28 .
^ a b E.A. Jeffery (1978). "Component Minimization of the Bargman–Wigner wavefunction" . Australian Journal of Physics . 31 (2). Melbourne: CSIRO: 137. Bibcode :1978AuJPh..31..137J . doi :10.1071/ph780137 . NB: The convention for the four-gradient in this article is ∂μ = (∂/∂t , ∇
) , same as the Wikipedia article. Jeffery's conventions are different: ∂μ = (−i ∂/∂t , ∇
) . Also Jeffery uses collects the x and y components of the momentum operator: p ± = p 1 ± ip 2 = p x ± ip y . The components p ± are not to be confused with ladder operators ; the factors of ±1, ±i occur from the gamma matrices .
^ Gábor Zsolt Tóth (2012). "Projection operator approach to the quantization of higher spin fields". The European Physical Journal C . 73 : 2273. arXiv :1209.5673 . Bibcode :2013EPJC...73.2273T . doi :10.1140/epjc/s10052-012-2273-x . S2CID 119140104 .
^ D. Shay (1968). "A Lagrangian formulation of the Joos–Weinberg wave equations for spin-j particles". Il Nuovo Cimento A . 57 (2): 210– 218. Bibcode :1968NCimA..57..210S . doi :10.1007/BF02891000 . S2CID 117170355 .
^ T. Jaroszewicz; P.S Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics . 216 (2). California, USA: 226– 267. Bibcode :1992AnPhy.216..226J . doi :10.1016/0003-4916(92)90176-M .
^ Y. S. Kim; Marilyn E. Noz (1986). Theory and applications of the Poincaré group . Dordrecht, Holland: Reidel. ISBN 9789027721419 .
^ a b c d E. G. Delgado Acosta; V. M. Banda Guzmán; M. Kirchbach (2015). "Bosonic and fermionic Weinberg-Joos (j,0) ⊕ (0,j) states of arbitrary spins as Lorentz tensors or tensor-spinors and second-order theory". The European Physical Journal A . 51 (3): 35. arXiv :1503.07230 . Bibcode :2015EPJA...51...35D . doi :10.1140/epja/i2015-15035-x . S2CID 118590440 .