That is, if Borel(X) denotes the Borelσ-algebra generated by the collection T of open subsets of X, then there exists a probability measure μ : Borel(X) → [0, 1] such that for any subset A ∈ Borel(X),
Let X be a Polish space and let be the transition probabilities for a time-homogeneous Markovsemigroup on X, i.e.
Theorem (Krylov–Bogolyubov). If there exists a point for which the family of probability measures { Pt(x, ·) | t > 0 } is uniformly tight and the semigroup (Pt) satisfies the Feller property, then there exists at least one invariant measure for (Pt), i.e. a probability measure μ on X such that
See also
For the 1st theorem: Ya. G. Sinai (Ed.) (1997): Dynamical Systems II. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics. Berlin, New York: Springer-Verlag. ISBN3-540-17001-4. (Section 1).
For the 2nd theorem: G. Da Prato and J. Zabczyk (1996): Ergodicity for Infinite Dimensional Systems. Cambridge Univ. Press. ISBN0-521-57900-7. (Section 3).
Notes
^N. N. Bogoliubov and N. M. Krylov (1937). "La theorie generale de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire". Annals of Mathematics. Second Series (in French). 38 (1): 65–113. doi:10.2307/1968511. JSTOR1968511. Zbl. 16.86.