Share to: share facebook share twitter share wa share telegram print page

Löwenheim–Skolem theorem

In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem.

The precise formulation is given below. It implies that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ, and that no first-order theory with an infinite model can have a unique model up to isomorphism. As a consequence, first-order theories are unable to control the cardinality of their infinite models.

The (downward) Löwenheim–Skolem theorem is one of the two key properties, along with the compactness theorem, that are used in Lindström's theorem to characterize first-order logic. In general, the Löwenheim–Skolem theorem does not hold in stronger logics such as second-order logic.

Theorem

Illustration of the Löwenheim–Skolem theorem

In its general form, the Löwenheim–Skolem Theorem states that for every signature σ, every infinite σ-structure M and every infinite cardinal number κ ≥ |σ|, there is a σ-structure N such that |N| = κ and such that

  • if κ < |M| then N is an elementary substructure of M;
  • if κ ≥ |M| then N is an elementary extension of M.

The theorem is often divided into two parts corresponding to the two cases above. The part of the theorem asserting that a structure has elementary substructures of all smaller infinite cardinalities is known as the downward Löwenheim–Skolem Theorem.[1]: 160–162  The part of the theorem asserting that a structure has elementary extensions of all larger cardinalities is known as the upward Löwenheim–Skolem Theorem.[2]

Discussion

Below we elaborate on the general concept of signatures and structures.

Concepts

Signatures

A signature consists of a set of function symbols Sfunc, a set of relation symbols Srel, and a function representing the arity of function and relation symbols. (A nullary function symbol is called a constant symbol.) In the context of first-order logic, a signature is sometimes called a language. It is called countable if the set of function and relation symbols in it is countable, and in general the cardinality of a signature is the cardinality of the set of all the symbols it contains.

A first-order theory consists of a fixed signature and a fixed set of sentences (formulas with no free variables) in that signature.[3]: 40  Theories are often specified by giving a list of axioms that generate the theory, or by giving a structure and taking the theory to consist of the sentences satisfied by the structure.

Structures / Models

Given a signature σ, a σ-structure M is a concrete interpretation of the symbols in σ. It consists of an underlying set (often also denoted by "M") together with an interpretation of the function and relation symbols of σ. An interpretation of a constant symbol of σ in M is simply an element of M. More generally, an interpretation of an n-ary function symbol f is a function from Mn to M. Similarly, an interpretation of a relation symbol R is an n-ary relation on M, i.e. a subset of Mn.

A substructure of a σ-structure M is obtained by taking a subset N of M which is closed under the interpretations of all the function symbols in σ (hence includes the interpretations of all constant symbols in σ), and then restricting the interpretations of the relation symbols to N. An elementary substructure is a very special case of this; in particular an elementary substructure satisfies exactly the same first-order sentences as the original structure (its elementary extension).

Consequences

The statement given in the introduction follows immediately by taking M to be an infinite model of the theory. The proof of the upward part of the theorem also shows that a theory with arbitrarily large finite models must have an infinite model; sometimes this is considered to be part of the theorem.[1]

A theory is called categorical if it has only one model, up to isomorphism. This term was introduced by Veblen (1904), and for some time thereafter mathematicians hoped they could put mathematics on a solid foundation by describing a categorical first-order theory of some version of set theory. The Löwenheim–Skolem theorem dealt a first blow to this hope, as it implies that a first-order theory which has an infinite model cannot be categorical. Later, in 1931, the hope was shattered completely by Gödel's incompleteness theorem.[1]

Many consequences of the Löwenheim–Skolem theorem seemed counterintuitive to logicians in the early 20th century, as the distinction between first-order and non-first-order properties was not yet understood. One such consequence is the existence of uncountable models of true arithmetic, which satisfy every first-order induction axiom but have non-inductive subsets.

Let N denote the natural numbers and R the reals. It follows from the theorem that the theory of (N, +, ×, 0, 1) (the theory of true first-order arithmetic) has uncountable models, and that the theory of (R, +, ×, 0, 1) (the theory of real closed fields) has a countable model. There are, of course, axiomatizations characterizing (N, +, ×, 0, 1) and (R, +, ×, 0, 1) up to isomorphism. The Löwenheim–Skolem theorem shows that these axiomatizations cannot be first-order. For example, in the theory of the real numbers, the completeness of a linear order used to characterize R as a complete ordered field, is a non-first-order property.[1]: 161 

Another consequence that was considered particularly troubling is the existence of a countable model of set theory, which nevertheless must satisfy the sentence saying the real numbers are uncountable. Cantor's theorem states that some sets are uncountable. This counterintuitive situation came to be known as Skolem's paradox; it shows that the notion of countability is not absolute.[4]

Proof sketch

Downward part

For each first-order -formula , the axiom of choice implies the existence of a function

such that, for all , either

or

.

Applying the axiom of choice again we get a function from the first-order formulas to such functions .

The family of functions gives rise to a preclosure operator on the power set of

for .

Iterating countably many times results in a closure operator . Taking an arbitrary subset such that , and having defined , one can see that also . Then is an elementary substructure of by the Tarski–Vaught test.

The trick used in this proof is essentially due to Skolem, who introduced function symbols for the Skolem functions into the language. One could also define the as partial functions such that is defined if and only if . The only important point is that is a preclosure operator such that contains a solution for every formula with parameters in which has a solution in and that

.

Upward part

First, one extends the signature by adding a new constant symbol for every element of . The complete theory of for the extended signature is called the elementary diagram of . In the next step one adds many new constant symbols to the signature and adds to the elementary diagram of the sentences for any two distinct new constant symbols and . Using the compactness theorem, the resulting theory is easily seen to be consistent. Since its models must have cardinality at least , the downward part of this theorem guarantees the existence of a model which has cardinality exactly . It contains an isomorphic copy of as an elementary substructure.[5][6]: 100–102 

In other logics

Although the (classical) Löwenheim–Skolem theorem is tied very closely to first-order logic, variants hold for other logics. For example, every consistent theory in second-order logic has a model smaller than the first supercompact cardinal (assuming one exists). The minimum size at which a (downward) Löwenheim–Skolem–type theorem applies in a logic is known as the Löwenheim number, and can be used to characterize that logic's strength. Moreover, if we go beyond first-order logic, we must give up one of three things: countable compactness, the downward Löwenheim–Skolem Theorem, or the properties of an abstract logic.[7]: 134 

Historical notes

This account is based mainly on Dawson (1993). To understand the early history of model theory one must distinguish between syntactical consistency (no contradiction can be derived using the deduction rules for first-order logic) and satisfiability (there is a model). Somewhat surprisingly, even before the completeness theorem made the distinction unnecessary, the term consistent was used sometimes in one sense and sometimes in the other.

The first significant result in what later became model theory was Löwenheim's theorem in Leopold Löwenheim's publication "Über Möglichkeiten im Relativkalkül" (1915):

For every countable signature σ, every σ-sentence that is satisfiable is satisfiable in a countable model.

Löwenheim's paper was actually concerned with the more general Peirce–Schröder calculus of relatives (relation algebra with quantifiers).[1] He also used the now antiquated notations of Ernst Schröder. For a summary of the paper in English and using modern notations see Brady (2000, chapter 8).

According to the received historical view, Löwenheim's proof was faulty because it implicitly used Kőnig's lemma without proving it, although the lemma was not yet a published result at the time. In a revisionist account, Badesa (2004) considers that Löwenheim's proof was complete.

Skolem (1920) gave a (correct) proof using formulas in what would later be called Skolem normal form and relying on the axiom of choice:

Every countable theory which is satisfiable in a model M, is satisfiable in a countable substructure of M.

Skolem (1922) also proved the following weaker version without the axiom of choice:

Every countable theory which is satisfiable in a model is also satisfiable in a countable model.

Skolem (1929) simplified Skolem (1920). Finally, Anatoly Ivanovich Maltsev (Анато́лий Ива́нович Ма́льцев, 1936) proved the Löwenheim–Skolem theorem in its full generality (Maltsev 1936). He cited a note by Skolem, according to which the theorem had been proved by Alfred Tarski in a seminar in 1928. Therefore, the general theorem is sometimes known as the Löwenheim–Skolem–Tarski theorem. But Tarski did not remember his proof, and it remains a mystery how he could do it without the compactness theorem.

It is somewhat ironic that Skolem's name is connected with the upward direction of the theorem as well as with the downward direction:

"I follow custom in calling Corollary 6.1.4 the upward Löwenheim-Skolem theorem. But in fact Skolem didn't even believe it, because he didn't believe in the existence of uncountable sets."Hodges (1993).
"Skolem [...] rejected the result as meaningless; Tarski [...] very reasonably responded that Skolem's formalist viewpoint ought to reckon the downward Löwenheim-Skolem theorem meaningless just like the upward."Hodges (1993).
"Legend has it that Thoralf Skolem, up until the end of his life, was scandalized by the association of his name to a result of this type, which he considered an absurdity, nondenumerable sets being, for him, fictions without real existence."Poizat (2000).

References

  1. ^ a b c d e Nourani, C. F., A Functorial Model Theory: Newer Applications to Algebraic Topology, Descriptive Sets, and Computing Categories Topos (Toronto: Apple Academic Press; Boca Raton: CRC Press, 2014), pp. 160–162.
  2. ^ Sheppard, B., The Logic of Infinity (Cambridge: Cambridge University Press, 2014), p. 372.
  3. ^ Haan, R. de, Parameterized Complexity in the Polynomial Hierarchy: Extending Parameterized Complexity Theory to Higher Levels of the Hierarchy (Berlin/Heidelberg: Springer, 2019), p. 40.
  4. ^ Bays, T., "Skolem's Paradox", Stanford Encyclopedia of Philosophy, Winter 2014.
  5. ^ Church, A., & Langford, C. H., eds., The Journal of Symbolic Logic (Storrs, CT: Association for Symbolic Logic, 1981), p. 529.
  6. ^ Leary, C. C., & Kristiansen, L., A Friendly Introduction to Mathematical Logic (Geneseo, NY: Milne Library, 2015), pp. 100–102.
  7. ^ Chang, C. C., & Keisler, H. J., Model Theory, 3rd ed. (Mineola & New York: Dover Publications, 1990), p. 134.

Sources

The Löwenheim–Skolem theorem is treated in all introductory texts on model theory or mathematical logic.

Historical publications

  • Löwenheim, Leopold (1915), "Über Möglichkeiten im Relativkalkül" (PDF), Mathematische Annalen, 76 (4): 447–470, doi:10.1007/BF01458217, ISSN 0025-5831, S2CID 116581304
  • Maltsev, Anatoly Ivanovich (1936), "Untersuchungen aus dem Gebiete der mathematischen Logik", Matematicheskii Sbornik, Novaya Seriya, 1(43) (3): 323–336
  • Skolem, Thoralf (1920), "Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen", Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse, 4: 1–36
    • Skolem, Thoralf (1977), "Logico-combinatorical investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Löwenheim and generalizations of the theorem", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 (3rd ed.), Cambridge, Massachusetts: Harvard University Press, pp. 252–263, ISBN 0-674-32449-8 (online copy, p. 252, at Google Books)
  • Skolem, Thoralf (1922), "Einige Bemerkungen zu axiomatischen Begründung der Mengenlehre", Mathematikerkongressen I Helsingfors den 4–7 Juli 1922, den Femte Skandinaviska Matematikerkongressen, Redogörelse: 217–232
  • Skolem, Thoralf (1929), "Über einige Grundlagenfragen der Mathematik", Skrifter Utgitt av Det Norske Videnskaps-Akademi I Oslo, I. Matematisk-naturvidenskabelig Klasse, 7: 1–49
  • Veblen, Oswald (1904), "A System of Axioms for Geometry", Transactions of the American Mathematical Society, 5 (3): 343–384, doi:10.2307/1986462, ISSN 0002-9947, JSTOR 1986462

Secondary sources

Read other articles:

Konstantinus VIΚωνσταντῖνος Ϛ΄Konstantinus VI (sebelah kanan salib) memimpin Konsili Nicea II. Miniatur dari awal abad kesebelas.Kaisar Romawi TimurBerkuasa8 September 780 – Agustus 797PendahuluLeo IVPenerusIreneWaliIreneInformasi pribadiKelahiran771Kematiansebelum 805WangsaDinasti IsaurianusAyahLeo IV, Kaisar Romawi TimurIbuIrene, Maharani Romawi TimurPasanganMaria dari AmniaTheodoteAnakEuphrosyneIreneLeo Konstantinus VI (bahasa Yunani Kuno: Κωνσταντῖνος Ϛ΄, …

Ini adalah nama Korea; marganya adalah Yoon. Yoon So-heeLahir7 Mei 1993 (umur 30)Busan, South KoreaPendidikanKAISTPekerjaanAktrisTahun aktif2013-sekarangAgenS.M. Culture & ContentsNama KoreaHangul윤소희 Hanja尹邵熙 Alih AksaraYun So-heeMcCune–ReischauerYun Sohŭi Templat:Korean membutuhkan parameter |hangul=. Yoon So-hee (Hangul: 윤소희; lahir pada 7 Mei 1993) merupakan aktris dari Korea Selatan Latar Belakang Yoon So-hee lahir di Stuttgart, Jerman pada…

Chemical compound OxatomideClinical dataTrade namesTinset, othersOther namesKW-4354; McN-JR 35443; R-35443AHFS/Drugs.comInternational Drug NamesRoutes ofadministrationBy mouthATC codeR06AE06 (WHO) Legal statusLegal status In general: ℞ (Prescription only) Identifiers IUPAC name 1-{3-[4-(diphenylmethyl)piperazin-1-yl]propyl}-1,3-dihydro-2H-benzimidazol-2-one CAS Number60607-34-3 NPubChem CID4615ChemSpider4454 YUNIIJ31IL9Z2EEKEGGD01773 YChEBICHEBI:31943ChEMBLCh…

العلاقات الموزمبيقية النيجيرية موزمبيق نيجيريا   موزمبيق   نيجيريا تعديل مصدري - تعديل   العلاقات الموزمبيقية النيجيرية هي العلاقات الثنائية التي تجمع بين موزمبيق ونيجيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه …

Artikel ini bukan mengenai Persikubar Kutai Barat. PersikukarNama lengkapPersatuan Sepakbola Indonesia Kutai KartanegaraJulukanLaskar LembuswanaStadionStadion Rondong Demang Tenggarong(Kapasitas: 10.000)PemilikAskab PSSI Kutai KartanegaraKetuaRendi Solihin[1]LigaLiga 3 Persikukar (atau singkatan dari Persatuan Sepakbola Indonesia Kutai Kartanegara) adalah tim sepak bola Indonesia yang berasal dari Kabupaten Kutai Kartanegara, Kalimantan Timur, Indonesia. Tim yang bermarkas di Stadion Ron…

Questa voce o sezione sull'argomento Africa non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: sicuramente libri sull'argomento esistono, e andrebbero usati per completare e fontare la voce Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. La cultura swahili è la cultura tradizionale dei popoli della costa della Tanzania, del Kenya, del Mozambico set…

Untuk kegunaan lain, lihat Bifrost (disambiguasi). Dewa Heimdallr berdiri di depan jembatan pelangi sambil meniup terompet (1905) oleh Emil Doepler. Dalam mitologi Nordik, Bifröst (/ˈbɪvrɒst/ simakⓘ[1]) atau Bilröst adalah jembatan pelangi menyala yang membentang antara Midgard (Bumi) dan Asgard, ranah para dewa. Jembatan ini dibuktikan sebagai Bilröst dalam Puitis Edda; disusun pada abad ke-13 dari sumber-sumber tradisional sebelumnya, dan sebagai Bifröst dalam Prosa Edda;…

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Mario Caccia Nazionalità  Italia Calcio Ruolo Attaccante Termine carriera 1953 Carriera Squadre di club1 1938-1940 Pro Patria14 (2)1940-1941 Pisa3 (0)1941-1942 Lecce2 (0)1942-1943 Sparta Novara? (?)1945-1946 Omegna? (?)1946-1947 Inter5 (1)1947-1950 Omegna? (?)1950-1953…

Voce principale: Unione Sportiva Catanzaro. Unione Sportiva CatanzaroStagione 1963-1964Sport calcio Squadra Catanzaro Allenatore Leandro Remondini Presidente Nicola Ceravolo Serie B10º posto Coppa ItaliaSecondo turno Maggiori presenzeCampionato: Gasparini, Nardin (35) Miglior marcatoreCampionato: Bagnoli (11) 1962-1963 1964-1965 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Unione Sportiva Catanzaro nelle competizioni ufficiali della stagione …

Pemukiman Harrison Barat di County Franklin Lokasi di Vermont County Franklin adalah sebuah county yang terletak di negara bagian Vermont, Amerika Serikat. Pada sensus 2020, jumlah penduduknya adalah 49.946 jiwa.[1] Pusat pemerintahannya adalah kota St. Albans.[2] Berbatasan dengan provinsi Quebec di Kanada. County ini dibentuk pada tahun 1792 dan diorganisasi pada tahun 1796.[3][4] County Franklin merupakan bagian dari wilayah metropolitan Burlington. Sejarah Cou…

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКл…

Place in Centre-Est Region, Burkina FasoNaba-SougdinCountry Burkina FasoRegionCentre-Est RegionProvinceBoulgou ProvinceDepartmentTenkodogo DepartmentPopulation (2005 est.) • Total404 Naba-Sougdin is a village in the Tenkodogo Department of Boulgou Province in south-eastern Burkina Faso. As of 2005, the village has a population of 404.[1] References ^ Burkinabé government inforoute communale Archived 2008-10-11 at the Wayback Machine vte Boulgou ProvinceCapital: Ten…

Mujaheddin al confine del Pakistan nel 1985 Mujaheddin (in arabo مجاهدين‎?), erronea traslitterazione giornalistica di mujāhidīn, pl. di mujāhid (مجاهد): indica colui/lei che è impegnato/a nel jihād dalla radice semitica jhd che significa forza o anche, per estensione, rinforzo. A partire dalla seconda metà del XX secolo tale termine si diffonde nei Paesi occidentali per indicare i guerriglieri d'ispirazione islamica, specie…

Hartz ChickenNama dagangHartz Chicken BuffetJenisSwastaIndustriPanganDidirikan1972; 52 tahun lalu (1972) di Texas, Amerika SerikatPendiriW. Lawrence Hartzog Sr.KantorpusatSpring, Texas, Amerika SerikatWilayah operasiAmerika Utara, MalaysiaProdukMakanan cepat saji, yang meliputi ayam goreng, kentang goreng, yeast rolls, ikan goreng dan salah, sayur hangat, sup hangat dan es krim.PemilikHartz Franchise Restaurants, LtdSitus webwww.hartz-chicken.com Hartz Chicken [1] adalah sebuah nama…

Gonnosnò GonnonnòKomuneComune di GonnosnòLokasi Gonnosnò di Provinsi OristanoNegaraItaliaWilayah SardiniaProvinsiOristano (OR)Pemerintahan • Wali kotaMauro SteriLuas • Total15,46 km2 (5,97 sq mi)Ketinggian220 m (720 ft)Populasi (2016) • Total772[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos09090Kode area telepon0783Situs webhttp://www.comune.gonnosno.or.it Gonnosnò (bahasa Sardinia: Gonno…

Sporting event delegationSouth Africa at the2004 Summer OlympicsIOC codeRSANOCSouth African Sports Confederation and Olympic CommitteeWebsitewww.sascoc.co.zain AthensCompetitors106 in 19 sportsFlag bearer Mbulaeni Mulaudzi[1]MedalsRanked 43rd Gold 1 Silver 3 Bronze 2 Total 6 Summer Olympics appearances (overview)1904190819121920192419281932193619481952195619601964–1988199219962000200420082012201620202024 South Africa competed at the 2004 Summer Olympics in Athens, Greece, from 13 …

ThaascomuneThaas – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementÉpernay CantoneVertus-Plaine Champenoise TerritorioCoordinate48°39′N 3°53′E / 48.65°N 3.883333°E48.65; 3.883333 (Thaas)Coordinate: 48°39′N 3°53′E / 48.65°N 3.883333°E48.65; 3.883333 (Thaas) Superficie11,14 km² Abitanti108[1] (2009) Densità9,69 ab./km² Altre informazioniCod. postale51230 Fuso orarioUTC+1 Codice INS…

Unicameral legislature of the German Democratic Republic People's Chamber VolkskammerGerman Democratic RepublicEmblemTypeTypeUnicameral[note 1] HistoryFounded7 October 1949 (1949-10-07)Disbanded3 October 1990 (1990-10-03)Preceded byReichstag (Nazi Germany) 1933–1945Länderkammer (East Germany) 1949–1958Succeeded byBundestagLeadershipPresidentJohannes Dieckmann (first) Sabine Bergmann-Pohl (last) Vice President/Deputy President(first presidium)H…

Bloomberg L.P.Logo Stato Stati Uniti Fondazione1º ottobre 1981[1] a New York Fondata daMichael Bloomberg, Thomas Secunda, Duncan MacMillan, Charles Zegar[2] Sede principaleNew York Persone chiavePeter Grauer, Dan Doctoroff Settoreservizi finanziari, news, televisione, radio, agenzia stampa Fatturato9 miliardi di dollari (2014) Dipendenti15000[3] (2011) Sito webwww.bloomberg.com/ Modifica dati su Wikidata · Manuale La Bloomberg Tower, sede di Bloomberg a Ne…

Malaysian politician (1961–2023) This biographical article is written like a résumé. Please help improve it by revising it to be neutral and encyclopedic. (April 2021) In this Malay name, there is no surname or family name. The name Ayub is a patronymic, and the person should be referred to by their given name, Salahuddin. Yang Berbahagia Datuk SeriSalahuddin AyubDGSM DSPNصلاح الدين أيوب‎Salahuddin in 2019Minister of Domestic Tradeand Costs of LivingIn office3 December…

Kembali kehalaman sebelumnya