Share to: share facebook share twitter share wa share telegram print page

Laser beam welding

A robot performs remote fibre laser welding.

Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume and precision requiring applications using automation, as in the automotive and aeronautics industries. It is based on keyhole or penetration mode welding.

Operation

Like electron-beam welding (EBW), laser beam welding has high power density (on the order of 1 MW/cm2) resulting in small heat-affected zones and high heating and cooling rates. The spot size of the laser can vary between 0.2 mm and 13 mm, though only smaller sizes are used for welding. The depth of penetration is proportional to the amount of power supplied, but is also dependent on the location of the focal point: penetration is maximized when the focal point is slightly below the surface of the workpiece.

A continuous or pulsed laser beam may be used depending upon the application. Millisecond-long pulses are used to weld thin materials such as razor blades while continuous laser systems are employed for deep welds.

LBW is a versatile process, capable of welding carbon steels, HSLA steels, stainless steel, aluminum, and titanium. Due to high cooling rates, cracking is a concern when welding high-carbon steels. The weld quality is high, similar to that of electron beam welding. The speed of welding is proportional to the amount of power supplied but also depends on the type and thickness of the workpieces. The high power capability of gas lasers make them especially suitable for high volume applications. LBW is particularly dominant in the automotive industry.[1][2]

Some of the advantages of LBW in comparison to EBW are:

  • the laser beam can be transmitted through air rather than requiring a vacuum
  • the process is easily automated with robotic machinery
  • x-rays are not generated
  • LBW results in higher quality welds[3][4]

A derivative of LBW, laser-hybrid welding, combines the laser of LBW with an arc welding method such as gas metal arc welding (GMAW). This combination allows for greater positioning flexibility, since GMAW supplies molten metal to fill the joint, and due to the use of a laser, increases the welding speed over what is normally possible with GMAW. Weld quality tends to be higher as well, since the potential for undercutting is reduced.[5]

Equipment

Automation and CAM

Although laser beam welding can be accomplished by hand, most systems are automated and use a system of computer aided manufacturing based on computer aided designs.[6][7][8] Laser welding can also be coupled with milling to form a finished part.[9]

In 2016 the RepRap project, which historically worked on fused filament fabrication, expanded to development of open source laser welding systems.[10] Such systems have been fully characterized and can be used in a wide scale of applications while reducing conventional manufacturing costs.

Lasers

Solid state

Solid-state lasers operate at wavelengths on the order of 1 micrometer, much shorter than gas lasers used for welding, and as a result require that operators wear special eyewear or use special screens to prevent retina damage. Nd:YAG lasers can operate in both pulsed and continuous mode, but the other types are limited to pulsed mode. The original and still popular solid-state design is a single crystal shaped as a rod approximately 20 mm in diameter and 200 mm long, and the ends are ground flat. This rod is surrounded by a flash tube containing xenon or krypton. When flashed, a pulse of light lasting about two milliseconds is emitted by the laser. Disk shaped crystals are growing in popularity in the industry, and flashlamps are giving way to diodes due to their high efficiency. Typical power output for ruby lasers is 10–20 W, while the Nd:YAG laser outputs between 0.04–6,000 W. To deliver the laser beam to the weld area, fiber optics are usually employed.

Gas

Gas lasers use high-voltage, low-current power sources to supply the energy needed to excite the gas mixture used as a lasing medium. These lasers can operate in both continuous and pulsed mode, and the wavelength of the CO2 gas laser beam is 10.6 μm, deep infrared, i.e. 'heat'. Fiber optic cable absorbs and is destroyed by this wavelength, so a rigid lens and mirror delivery system is used. Power outputs for gas lasers can be much higher than solid-state lasers, reaching 25 kW.[11]

Fiber

In fiber lasers, the main medium is the optical fiber itself. They are capable of power up to 50 kW and are increasingly being used for robotic industrial welding.

Laser beam delivery

Modern laser beam welding machines can be grouped into two types. In the traditional type, the laser output is moved to follow the seam. This is usually achieved with a robot. In many modern applications, remote laser beam welding is used. In this method, the laser beam is moved along the seam with the help of a laser scanner, so that the robotic arm does not need to follow the seam any more. The advantages of remote laser welding are the higher speed and the higher precision of the welding process.

Thermal modeling of pulsed-laser welding

Pulsed-laser welding has advantages over continuous wave (CW) laser welding. Some of these advantages are lower porosity and less spatter.[12] Pulsed-laser welding also has some disadvantages such as causing hot cracking in aluminum alloys.[2] Thermal analysis of the pulsed-laser welding process can assist in prediction of welding parameters such as depth of fusion, cooling rates, and residual stresses. Due to the complexity of the pulsed laser process, it is necessary to employ a procedure that involves a development cycle. The cycle involves constructing a mathematical model, calculating a thermal cycle using numerical modeling techniques like either finite elemental modeling (FEM) or finite difference method (FDM) or analytical models with simplifying assumptions, and validating the model by experimental measurements.

A methodology combining some of the published models involves:[13][14][15]

  1. Determining the power absorption efficiency.
  2. Calculating the recoil pressure based on temperatures and a Clausius-Clapeyron equation.
  3. Calculate the fluid flow velocities using the volume of fluid method (VOF).
  4. Calculating the temperature distribution.
  5. Increment time and repeat steps 1–4.
  6. Validating of results

Step 1

Not all radiant energy is absorbed and turned into heat for welding. Some of the radiant energy is absorbed in the plasma created by vaporizing and then subsequently ionizing the gas. In addition, the absorptivity is affected by the wavelength of the beam, the surface composition of the material being welded, the angle of incidence, and the temperature of the material.[12]

Rosenthal point source assumption leaves an infinitely high temperature discontinuity which is addressed by assuming a Gaussian distribution instead. Radiant energy is also not uniformly distributed within the beam. Some devices produce Gaussian energy distributions, whereas others can be bimodal.[12] A Gaussian energy distribution can be applied by multiplying the power density by a function like this:[14], where r is the radial distance from the center of the beam, =beam radius or spot size.

Using a temperature distribution instead of a point source assumption allows for easier calculation of temperature-dependent material properties such as absorptivity. On the irradiated surface, when a keyhole is formed, Fresnel reflection (the almost complete absorption of the beam energy due to multiple reflection within the keyhole cavity) occurs and can be modeled by , where ε is a function of dielectric constant, electric conductivity, and laser frequency. θ is the angle of incidence.[13] Understanding the absorption efficiency is key to calculating thermal effects.

Step 2

Lasers can weld in one of two modes: conduction and keyhole. Which mode is in operation depends on whether the power density is sufficiently high enough to cause evaporation.[12] Conduction mode occurs below the vaporization point while keyhole mode occurs above the vaporization point. The keyhole is analogous to an air pocket. The air pocket is in a state of flux. Forces such as the recoil pressure of the evaporated metal open the keyhole[13] while gravity (aka hydrostatic forces) and metal surface tension tend to collapse it.[15] At even higher power densities, the vapor can be ionized to form a plasma.

The recoil pressure is determined by using the Clausius-Clapeyron equation.[14], where P is the equilibrium vapor pressure, T is the liquid surface temperature, HLV is the latent heat of vaporization, TLV is the equilibrium temperature at the liquid-vapor interface. Using the assumption that the vapor flow is limited to sonic velocities,[8] one gets that , where Po is atmospheric pressure and Pr is recoil pressure.

Step 3

This pertains to keyhole profiles. Fluid flow velocities are determined by[13]

where is the velocity vector, P=pressure, ρ= mass density, =viscosity, β=thermal expansion coefficient, g=gravity, and F is the volume fraction of fluid in a simulation grid cell.

Step 4

In order to determine the boundary temperature at the laser impingement surface, you would apply an equation like this. ,[15] where kn=the thermal conductivity normal to the surface impinged on by the laser, h=convective heat transfer coefficient for air, σ is the Stefan–Boltzmann constant for radiation, and ε is the emissivity of the material being welded on, q is laser beam heat flux.

Unlike CW (Continuous Wave) laser welding which involves one moving thermal cycle, pulsed laser involves repetitively impinging on the same spot, thus creating multiple overlapping thermal cycles.[15] A method of addressing this is to add a step function that multiplies the heat flux by one when the beam is on but multiplies the heat flux by zero when the beam is off.[14] One way[15] to achieve this is by using a Kronecker delta which modifies q as follows: , where δ= the Kronecker delta, qe=experimentally determined heat flux. The problem with this method, is it does not allow you to see the effect of pulse duration. One way[14] of solving this is to a use a modifier that is time-dependent function such as:

where v= pulse frequency, n=0,1, 2,...,v-1), τ= pulse duration.

Next, you would apply this boundary condition and solve for Fourier's 2nd Law to obtain the internal temperature distribution. Assuming no internal heat generation, the solution is , where k=thermal conductivity, ρ=density, Cp=specific heat capacity, =fluid velocity vector.

Step 5

Incrementing is done by discretizing the governing equations presented in the previous steps and applying the next time and length steps.

Step 6

Results can be validated by specific experimental observations or trends from generic experiments. These experiments have involved metallographic verification of the depth of fusion.[9]

Consequences of simplifying assumptions

The physics of pulsed laser can be very complex and therefore, some simplifying assumptions need to be made to either speed up calculation or compensate for a lack of materials properties. The temperature-dependence of material properties such as specific heat are ignored to minimize computing time.

The liquid temperature can be overestimated if the amount of heat loss due to mass loss from vapor leaving the liquid-metal interface is not accounted for.[14]

See also

References

  1. ^ Cary and Helzer, p 210
  2. ^ a b Cieslak, M. (1988). "On the weldability, composition, and hardness of pulsed and continuous Nd: YAG laser welds in aluminum alloys 6061, 5456, and 5086". Metallurgical Transactions B. 9 (2): 319–329. doi:10.1007/BF02654217. S2CID 135498572.
  3. ^ "Ensuring the Quality of Laser Welds". Element. Retrieved 2022-05-31.
  4. ^ "Laser Beam Welding - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-05-31.
  5. ^ Weman, p 98
  6. ^ Reinhart, G., Munzert, U. and Vogl, W., 2008. A programming system for robot-based remote-laser-welding with conventional optics. CIRP Annals-Manufacturing Technology, 57(1), pp.37-40.
  7. ^ Kim, P., Rhee, S. and Lee, C.H., 1999. Automatic teaching of welding robot for free-formed seam using laser vision sensor. Optics and Lasers in Engineering, 31(3), pp.173-182.
  8. ^ a b Cline, H. E.; Anthony, T. R. (1977-09-01). "Heat treating and melting material with a scanning laser or electron beam". Journal of Applied Physics. 48 (9): 3895–3900. doi:10.1063/1.324261. ISSN 0021-8979.
  9. ^ a b Sabbaghzadeh, Jamshid; Azizi, Maryam; Torkamany, M. Javad (2008). "Numerical and experimental investigation of seam welding with a pulsed laser". Optics & Laser Technology. 40 (2): 289–296. doi:10.1016/j.optlastec.2007.05.005.
  10. ^ John J. Laureto, Serguei V. Dessiatoun, Michael M. Ohadi and Joshua M. Pearce. Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds. Machines 2016, 4(3), 14; doi: 10.3390/machines4030014
  11. ^ Cary and Helzer, p 209
  12. ^ a b c d Steen, William M.; Mazumder, Jyotirmoy (2010). Laser Material Processing. doi:10.1007/978-1-84996-062-5. ISBN 978-1-84996-061-8.
  13. ^ a b c d Lee, Jae Y.; Ko, Sung H.; Farson, Dave F.; Yoo, Choong D. (2002). "Mechanism of keyhole formation and stability in stationary laser welding". Journal of Physics D: Applied Physics. 35 (13): 1570. doi:10.1088/0022-3727/35/13/320. ISSN 0022-3727. S2CID 250782960.
  14. ^ a b c d e f Chen, Guibo; Gu, Xiuying; Bi, Juan (2016). "Numerical analysis of thermal effect in aluminum alloy by repetition frequency pulsed laser". Optik. 127 (20): 10115–10121. doi:10.1016/j.ijleo.2016.08.010.
  15. ^ a b c d e Frewin (January 1999). "Finite Element Model of Pulsed Laser Welding". Welding Journal. 78: 15–2.

Bibliography

  • Cary, Howard B. and Scott C. Helzer (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.
  • Weman, Klas (2003). Welding processes handbook. New York: CRC Press LLC. ISBN 0-8493-1773-8.
  • Kalpakjian, Serope and Schmid,Steven R.(2006). Manufacturing Engineering and Technology5th ed. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-148965-8

Read other articles:

Keuskupan Port HarcourtDioecesis Portus HarcurtensisKatolik LokasiNegara NigeriaProvinsi gerejawiCalabarKoordinat4°46′38″N 7°00′48″E / 4.77722°N 7.01333°E / 4.77722; 7.01333StatistikLuas21.850 km2 (8.440 sq mi)Populasi- Total- Katolik(per 2004)4.521.429218,412 (4.8%)Paroki159Imam157InformasiDenominasiKatolik RomaRitusRitus LatinPendirian16 Mei 1961KatedralKatedral Corpus Christi di D-line, Port HarcourtKepemimpinan kiniP…

Andaman SelatanPeta Kepulauan Andaman, dengan lokasi Pulau Andaman Selatan ditandai (warna merah)Andaman SelatanTampilkan peta Kepulauan Andaman dan NikobarAndaman SelatanTampilkan peta IndiaGeografiLokasiTeluk BenggalaKoordinat11°47′00″N 92°39′00″E / 11.783333°N 92.65°E / 11.783333; 92.65Koordinat: 11°47′00″N 92°39′00″E / 11.783333°N 92.65°E / 11.783333; 92.65KepulauanKepulauan AndamanDibatasi olehSamudra HindiaLuas1.262…

Mau Jadi Apa?Sutradara Monty Tiwa Soleh Solihun Produser Chand Parwez Servia Gangsar Sukrisno Ditulis oleh Agasyah Karim Khalid Kashogi Soleh Solihun Pemeran Soleh Solihun Anggika Bölsterli Aurelie Moeremans Boris Bokir Adjis Doa Ibu Awwe Ricky Wattimena Yusril Fahriza Penata musikAndhika TriyadiSinematograferRollie MarkianoPenyuntingRyan PurwokoPerusahaanproduksi Starvision Plus Millennia Pictures DistributorKharisma StarVisionTanggal rilis 30 November 2017Durasi103 menitNegara Indo…

Cessna 188 adalah keluarga pesawat pertanian ringan sayap rendah (low wing) yang dihasilkan antara tahun 1966 dan 1983 oleh Cessna Aircraft Company.[1][2] Berbagai versi dari 188 - AGwagon, AGpickup, AGtruck dan AGhusky, bersama dengan varian AGcarryall dari 185, merupakan jalur pesawat pertanian Cessna.[1][2] Referensi ^ a b Christy, Joe The Complete Guide to the Single-Engine Cessnas 3rd ed, TAB Books, Blue Ridge Summit PA USA, 1979, pp 119-128 ^ a b Demand Medi…

Cet article est une ébauche concernant le catch. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (septembre 2008). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité t…

Group of federally-managed protected areas in the United States National Conservation Lands poster for Upper Missouri River Breaks National Monument (2014) National Conservation Lands, formally known as the National Landscape Conservation System, is a 35-million-acre (140,000 km2) collection of lands in 873 federally recognized areas considered to be the crown jewels of the American West.[1] These lands represent 10% of the 258 million acres (1,040,000 km2) managed by the …

Artikel bertopik sosialisme ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs Bagian dari seriSosialisme Perkembangan Sejarah sosialisme Perdebatan kalkulasi sosialis Ekonomi sosialis Gagasan Penghitungan dalam barang Kepemilikan kolektif Koperasi Kepemilikan bersama Demokrasi ekonomi Perencanaan ekonomi Kesetaraan kesempatan Asosiasi bebas Demokrasi industri Model masukan-keluaran Internasionalisme Kupon kerja Keseimbangan material Ekonomi sejawat ke sejawat(…

American mathematician Pavel EtingofBorn1969Kyiv, Ukrainian SSRAlma materYale UniversityAwards Fellow, American Mathematical Society (2012) AAAS Fellow (2016) Scientific careerFieldsMathematicsInstitutionsMITThesis Representation theory and holonomic Systems  (1994)Doctoral advisorIgor Frenkel Websitemath.mit.edu/~etingof/ Pavel Ilyich Etingof (Russian: Павел Ильич Этингоф; born 1969) is an American mathematician of Russian-Ukrainian origin. He does research on the int…

Piala Liga Inggris 2000–20012000–01 Football League CupNegara Inggris WalesTanggal penyelenggaraan22 Agustus 2000 s.d. 25 Februari 2001Jumlah peserta92Juara bertahanLeicester CityJuaraLiverpool(gelar ke-6)Tempat keduaBirmingham CityPencetak gol terbanyakRobbie Fowler(6 gol)← 1999–2000 2001–2002 → Piala Liga Inggris 2000–2001 adalah edisi ke-41 penyelenggaraan Piala Liga Inggris, sebuah kompetisi dengan sistem gugur untuk 92 tim terbaik di Inggris. Edisi ini dimenangkan ol…

Collection of children's verse by A. A. Milne For the album, see Now We Are Six (album). For other uses, see Now We Are Six (disambiguation). Now We Are Six First edition (Methuen)AuthorA. A. MilneIllustratorE. H. ShepardCountryUnited KingdomLanguageEnglishSeriesWinnie-the-PoohGenreChildren's poetryPublisherMethuen & Co. Ltd. (London)Media typePrint (hardback and paperback)Preceded byWhen We Were Very Young TextNow We Are Six at Wikisource Now We Are Six is a 1927 book of chil…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Giovanna TosatoTosato pada April 2000Lahirc. 1949 (umur 74–75)AlmamaterUniversitas Sapienza RomaKarier ilmiahBidangIlmu biomedis, riset kankerInstitusiFood and Drug AdministrationNational Cancer Institute Giovanna Tosato (lahir c. 1949) a…

European OceaniansTotal population26,000,000 62% of Oceania's population (2018)[1]Regions with significant populationsAustralia, Hawaii, New Caledonia and New ZealandLanguagesPredominantly English, French and Spanish[2][3]ReligionChristianity (Anglicanism/Protestantism and Catholicism) and JudaismRelated ethnic groupsEuropean diaspora This article is part of a series onOceanian Culture Society Shared Histories Languages Religion People Indigenous European Arts and literat…

City in Tasmania, AustraliaDevonportlimilinaturi (Northern Tasmanian)TasmaniaFrom top; left to right: Devonport aerial, Rooke Street, Mersey Bluff Lighthouse, Home Hill estate, Heritage Walk Track, MS Spirit of Tasmania IDevonportCoordinates41°10′48″S 146°21′01″E / 41.18000°S 146.35028°E / -41.18000; 146.35028Population26,150 (2021)[1] (46th)Established1850Postcode(s)7310Elevation9 m (30 ft)Time zoneAEST (UTC+10) • Summe…

Artikel ini sedang dalam perubahan besar untuk sementara waktu.Untuk menghindari konflik penyuntingan, dimohon jangan melakukan penyuntingan selama pesan ini ditampilkan.Halaman ini terakhir disunting oleh AABot (Kontrib • Log) 78 hari 1427 menit lalu. Pesan ini dapat dihapus jika halaman ini sudah tidak disunting dalam beberapa jam. Jika Anda adalah penyunting yang menambahkan templat ini, harap diingat untuk menghapusnya setelah selesai atau menggantikannya dengan {{Under construct…

Award 1938 Nobel Prize in LiteraturePearl Sydenstricker Buckfor her rich and truly epic descriptions of peasant life in China and for her biographical masterpieces.Date 6 October 1938 (announcement) 10 December 1938 (ceremony) LocationStockholm, SwedenPresented bySwedish AcademyFirst awarded1901WebsiteOfficial website ← 1937 · Nobel Prize in Literature · 1939 → The 1938 Nobel Prize in Literature was awarded to the American author Pearl S. Buck (1892–1973) for …

Régions du Guyana, 2010 Armoiries du Guyana L'histoire du Guyana commence avec les premiers peuplements du territoire par des peuples amérindiens, notamment les Arawaks et les Kali'nas. En 1499, la première expédition du conquistador Alonso de Ojeda arrive d'Espagne au fleuve Essequibo. L'histoire du Guyana a été façonnée par de nombreux groupes ethniques et plusieurs puissances coloniales, notamment les Espagnols, les Français, les Néerlandais et les Britanniques. Les rébellions d'es…

Mahkamah Persekutuan Malaysia (Melayu) محكمه فرسوكوتوان مليسيا (Jawi) Mahkamah Agung Federal Malaysia (Indonesia) Malaysian Federal Court (Inggris) 马来西亚联邦法院 (Mandarin) மலேசிய பெடரல் நீதிமன்றம் (Tamil)Bangunan Istana Kehakiman di PutrajayaDidirikan1957Negara MalaysiaLokasiIstana Kehakiman, Putrajaya, Wilayah PersekutuanCara penunjukkanDitunjuk oleh kerajaan dengan saran dari Perdana MenteriDisahkan olehKonstitus…

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 中…

River in Massachusetts, United States Saugus River and environs The Saugus River is a river in Massachusetts. The river is 13 miles (21 km) long, drains a watershed of approximately 47 square miles (120 km2), and passes through Wakefield, Lynnfield, Saugus, and Lynn as it meanders east and south from its source in Lake Quannapowitt in Wakefield (elevation 90 feet) to its mouth in Broad Sound. It has at least eight tributaries: the Mill River; Bennets Pond Brook; the Pines River; Hawkes…

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロー…

Kembali kehalaman sebelumnya