Share to: share facebook share twitter share wa share telegram print page

Lindelöf hypothesis

In mathematics, the Lindelöf hypothesis is a conjecture by Finnish mathematician Ernst Leonard Lindelöf[1] about the rate of growth of the Riemann zeta function on the critical line. This hypothesis is implied by the Riemann hypothesis. It says that for any ε > 0, as t tends to infinity (see big O notation). Since ε can be replaced by a smaller value, the conjecture can be restated as follows: for any positive ε,

The μ function

If σ is real, then μ(σ) is defined to be the infimum of all real numbers a such that ζ(σ + iT ) = O(Ta). It is trivial to check that μ(σ) = 0 for σ > 1, and the functional equation of the zeta function implies that μ(σ) = μ(1 − σ) − σ + 1/2. The Phragmén–Lindelöf theorem implies that μ is a convex function. The Lindelöf hypothesis states μ(1/2) = 0, which together with the above properties of μ implies that μ(σ) is 0 for σ ≥ 1/2 and 1/2 − σ for σ ≤ 1/2.

Lindelöf's convexity result together with μ(1) = 0 and μ(0) = 1/2 implies that 0 ≤ μ(1/2) ≤ 1/4. The upper bound of 1/4 was lowered by Hardy and Littlewood to 1/6 by applying Weyl's method of estimating exponential sums to the approximate functional equation. It has since been lowered to slightly less than 1/6 by several authors using long and technical proofs, as in the following table:

μ(1/2) ≤ μ(1/2) ≤ Author
1/4 0.25 Lindelöf[2] Convexity bound
1/6 0.1667 Hardy & Littlewood[3][4]
163/988 0.1650 Walfisz 1924[5]
27/164 0.1647 Titchmarsh 1932[6]
229/1392 0.164512 Phillips 1933[7]
0.164511 Rankin 1955[8]
19/116 0.1638 Titchmarsh 1942[9]
15/92 0.1631 Min 1949[10]
6/37 0.16217 Haneke 1962[11]
173/1067 0.16214 Kolesnik 1973[12]
35/216 0.16204 Kolesnik 1982[13]
139/858 0.16201 Kolesnik 1985[14]
9/56 0.1608 Bombieri & Iwaniec 1986[15]
32/205 0.1561 Huxley[16]
53/342 0.1550 Bourgain[17]
13/84 0.1548 Bourgain[18]

Relation to the Riemann hypothesis

Backlund[19] (1918–1919) showed that the Lindelöf hypothesis is equivalent to the following statement about the zeros of the zeta function: for every ε > 0, the number of zeros with real part at least 1/2 + ε and imaginary part between T and T + 1 is o(log(T)) as T tends to infinity. The Riemann hypothesis implies that there are no zeros at all in this region and so implies the Lindelöf hypothesis. The number of zeros with imaginary part between T and T + 1 is known to be O(log(T)), so the Lindelöf hypothesis seems only slightly stronger than what has already been proved, but in spite of this it has resisted all attempts to prove it.

Means of powers (or moments) of the zeta function

The Lindelöf hypothesis is equivalent to the statement that for all positive integers k and all positive real numbers ε. This has been proved for k = 1 or 2, but the case k = 3 seems much harder and is still an open problem.

There is a much more precise conjecture about the asymptotic behavior of the integral: it is believed that

for some constants ck,j . This has been proved by Littlewood for k = 1 and by Heath-Brown[20] for k = 2 (extending a result of Ingham[21] who found the leading term).

Conrey and Ghosh[22] suggested the value

for the leading coefficient when k is 6, and Keating and Snaith[23] used random matrix theory to suggest some conjectures for the values of the coefficients for higher k. The leading coefficients are conjectured to be the product of an elementary factor, a certain product over primes, and the number of n × n Young tableaux given by the sequence

1, 1, 2, 42, 24024, 701149020, ... (sequence A039622 in the OEIS).

Other consequences

Denoting by pn the n-th prime number, let A result by Albert Ingham shows that the Lindelöf hypothesis implies that, for any ε > 0, if n is sufficiently large.

A prime gap conjecture stronger than Ingham's result is Cramér's conjecture, which asserts that[24][25]

The density hypothesis

The known zero-free region roughly speaking corresponds to the bottom right corner of the image, and the Riemann hypothesis would push the entire diagram down to the x-axis . At the other extreme, the upper boundary of this diagram corresponds to the trivial bound coming from the Riemann-von Mangoldt formula.(Various other estimates do exist[26])

The density hypothesis says that , where denote the number of zeros of with and , and it would follow from the Lindelöf hypothesis.[27][28]

More generally let then it is known that this bound roughly correspond to asymptotics for primes in short intervals of length .[29][30]

Ingham showed that in 1940,[31] Huxley that in 1971,[32] and Guth and Maynard that in 2024 (preprint)[33][34][35] and these coincide on , therefore the latest work of Guth and Maynard gives the closest known value to as we would expect from the Riemann hypothesis and improves the bound to or equivalently the asymptotics to .

In theory improvements to Baker, Harman, and Pintz estimates for the Legendre conjecture and better Siegel zeros free regions could also be expected among others.

L-functions

The Riemann zeta function belongs to a more general family of functions called L-functions. In 2010, new methods to obtain sub-convexity estimates for L-functions in the PGL(2) case were given by Joseph Bernstein and Andre Reznikov[36] and in the GL(1) and GL(2) case by Akshay Venkatesh and Philippe Michel[37] and in 2021 for the GL(n) case by Paul Nelson.[38][39]

See also

Notes and references

  1. ^ see Lindelöf (1908)
  2. ^ Lindelöf (1908)
  3. ^ Hardy, G. H.; Littlewood, J. E. (1923). "On Lindelöf's hypothesis concerning the Riemann zeta-function". Proc. R. Soc. A: 403–412.
  4. ^ Hardy, G. H.; Littlewood, J. E. (1916). "Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes". Acta Mathematica. 41: 119–196. doi:10.1007/BF02422942. ISSN 0001-5962.
  5. ^ Walfisz, Arnold (1924). "Zur Abschätzung von ζ(½ + it)". Nachr. Ges. Wiss. Göttingen, math.-phys. Klasse: 155–158.
  6. ^ Titchmarsh, E. C. (1932). "On van der Corput's method and the zeta-function of Riemann (III)". The Quarterly Journal of Mathematics. os-3 (1): 133–141. doi:10.1093/qmath/os-3.1.133. ISSN 0033-5606.
  7. ^ Phillips, Eric (1933). "The zeta-function of Riemann: further developments of van der Corput's method". The Quarterly Journal of Mathematics. os-4 (1): 209–225. doi:10.1093/qmath/os-4.1.209. ISSN 0033-5606.
  8. ^ Rankin, R. A. (1955). "Van der Corput's method and the theory of exponent pairs". The Quarterly Journal of Mathematics. 6 (1): 147–153. doi:10.1093/qmath/6.1.147. ISSN 0033-5606.
  9. ^ Titchmarsh, E. C. (1942). "On the order of ζ(½+ it )". The Quarterly Journal of Mathematics. os-13 (1): 11–17. doi:10.1093/qmath/os-13.1.11. ISSN 0033-5606.
  10. ^ Min, Szu-Hoa (1949). "On the order of 𝜁(1/2+𝑖𝑡)". Transactions of the American Mathematical Society. 65 (3): 448–472. doi:10.1090/S0002-9947-1949-0030996-6. ISSN 0002-9947.
  11. ^ Haneke, W. (1963). "Verschärfung der Abschätzung von ξ(½+it)". Acta Arithmetica (in German). 8 (4): 357–430. doi:10.4064/aa-8-4-357-430. ISSN 0065-1036.
  12. ^ Kolesnik, G. A. (1973). "On the estimation of some trigonometric sums". Acta Arithmetica (in Russian). 25 (1): 7–30. ISSN 0065-1036. Retrieved 2024-02-05.
  13. ^ Kolesnik, Grigori (1982-01-01). "On the order of ζ (1/2+ it ) and Δ( R )". Pacific Journal of Mathematics. 98 (1): 107–122. doi:10.2140/pjm.1982.98.107. ISSN 0030-8730.
  14. ^ Kolesnik, G. (1985). "On the method of exponent pairs". Acta Arithmetica. 45 (2): 115–143. doi:10.4064/aa-45-2-115-143.
  15. ^ Bombieri, E.; Iwaniec, H. (1986). "On the order of ζ (1/2+ it )". Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 13 (3): 449–472.
  16. ^ Huxley (2002), Huxley (2005)
  17. ^ Bourgain (2017)
  18. ^ Bourgain (2017)
  19. ^ Backlund (1918–1919)
  20. ^ Heath-Brown (1979)
  21. ^ Ingham (1928)
  22. ^ Conrey & Ghosh (1998)
  23. ^ Keating & Snaith (2000)
  24. ^ Cramér, Harald (1936). "On the order of magnitude of the difference between consecutive prime numbers". Acta Arithmetica. 2 (1): 23–46. doi:10.4064/aa-2-1-23-46. ISSN 0065-1036.
  25. ^ Banks, William; Ford, Kevin; Tao, Terence (2023). "Large prime gaps and probabilistic models". Inventiones Mathematicae. 233 (3): 1471–1518. arXiv:1908.08613. doi:10.1007/s00222-023-01199-0. ISSN 0020-9910.
  26. ^ Trudgian, Timothy S.; Yang, Andrew (2023). "Toward optimal exponent pairs". arXiv:2306.05599 [math.NT].
  27. ^ "25a". aimath.org. Retrieved 2024-07-16.
  28. ^ "Density hypothesis - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2024-07-16.
  29. ^ "New Bounds for Large Values of Dirichlet Polynomials, Part 1 - Videos | Institute for Advanced Study". www.ias.edu. 2024-06-04. Retrieved 2024-07-16.
  30. ^ "New Bounds for Large Values of Dirichlet Polynomials, Part 2 - Videos | Institute for Advanced Study". www.ias.edu. 2024-06-04. Retrieved 2024-07-16.
  31. ^ Ingham, A. E. (1940). "ON THE ESTIMATION OF N (σ, T )". The Quarterly Journal of Mathematics. os-11 (1): 201–202. doi:10.1093/qmath/os-11.1.201. ISSN 0033-5606.
  32. ^ Huxley, M. N. (1971). "On the Difference between Consecutive Primes". Inventiones Mathematicae. 15 (2): 164–170. doi:10.1007/BF01418933. ISSN 0020-9910.
  33. ^ Guth, Larry; Maynard, James (2024). "New large value estimates for Dirichlet polynomials". arXiv:2405.20552 [math.NT].
  34. ^ Bischoff, Manon. "The Biggest Problem in Mathematics Is Finally a Step Closer to Being Solved". Scientific American. Retrieved 2024-07-16.
  35. ^ Cepelewicz, Jordana (2024-07-15). "'Sensational' Proof Delivers New Insights Into Prime Numbers". Quanta Magazine. Retrieved 2024-07-16.
  36. ^ Bernstein, Joseph; Reznikov, Andre (2010-10-05). "Subconvexity bounds for triple L -functions and representation theory". Annals of Mathematics. 172 (3): 1679–1718. arXiv:math/0608555. doi:10.4007/annals.2010.172.1679. ISSN 0003-486X. S2CID 14745024.
  37. ^ Michel, Philippe; Venkatesh, Akshay (2010). "The subconvexity problem for GL2". Publications Mathématiques de l'IHÉS. 111 (1): 171–271. arXiv:0903.3591. CiteSeerX 10.1.1.750.8950. doi:10.1007/s10240-010-0025-8. S2CID 14155294.
  38. ^ Nelson, Paul D. (2021-09-30). "Bounds for standard $L$-functions". arXiv:2109.15230 [math.NT].
  39. ^ Hartnett, Kevin (2022-01-13). "Mathematicians Clear Hurdle in Quest to Decode Primes". Quanta Magazine. Retrieved 2022-02-17.

Read other articles:

Kazamaura-mura 風間浦村 La mairie de Kazamaura. Drapeau Administration Pays Japon Région Tōhoku Préfecture Aomori Code postal 039-4500 Démographie Population 2 550 hab. (30 avril 2014) Densité 37 hab./km2 Géographie Coordonnées 41° 29′ 15″ nord, 140° 59′ 45″ est Superficie 6 960 ha = 69,60 km2 Localisation Géolocalisation sur la carte : Japon Kazamaura-mura Géolocalisation sur la carte : Japon …

Provinsi Iwami (石見国code: ja is deprecated , iwami no kuni) adalah provinsi lama Jepang yang berada di wilayah yang sekarang menjadi bagian barat prefektur Shimane. Iwami berbatasan dengan provinsi Aki, Bingo, Izumo, Nagato, dan provinsi Suo. Ibu kota berada di kota yang sekarang disebut Hamada. Di zaman Sengoku, wilayah Iwami dikuasai klan Mōri yang berkedudukan di provinsi tetangga Aki. lbsProvinsi lama Jepang Aki Awa (Kanto) Awa (Shikoku) Awaji Bingo Bitchu Bizen Bungo Buzen Chikugo Chi…

After Met YouPoster filmSutradaraPatrick EffendyProduserRaffi AhmadRoni PariniSkenarioPatrick EffendyHaqi AhmadCeritaAri IrhamDwitasariBerdasarkanAfter Met You karya Ari Irham dan DwitasariPemeranAri IrhamYoriko AngelineNaufan Raid AzkaYudha KelingWulan GuritnoSurya SaputraPenata musikHaris PranowoDimas WibisanaSinematograferFerry RusliPenyuntingDinda AmandaPerusahaanproduksiRA PicturesTanggal rilis 10 Januari 2019 (2019-01-10) Durasi107 menitNegaraIndonesiaBahasaBahasa IndonesiaPenda…

Keuskupan Agung JakartaArchidioecesis GiakartanaKatolik Gereja Katedral JakartaLambang Keuskupan Agung JakartaLokasiNegaraIndonesiaWilayahDaerah Khusus Ibukota Jakarta (kecuali Kelurahan Pondok Labu) Tangerang Raya, Banten Kabupaten Tangerang Kota Tangerang Kota Tangerang Selatan Bekasi Raya, Jawa Barat Kabupaten Bekasi Kota Bekasi 67Provinsi gerejawiJakartaSufraganBandungBogorDekanatJakarta PusatJakarta Barat IJakarta Barat IIJakarta SelatanJakarta UtaraJakarta TimurTangerang ITangerang II…

Agence pour l'enseignement français à l'étrangerRéseau AEFE des lycées français du monde : établissements scolaires en gestion directe établissements scolaires conventionnés établissements scolaires partenaires Excellence, partage, rayonnementHistoireFondation 6 juillet 1990[1]CadreSigle AEFEZone d'activité MondeType Établissement public à caractère administratif (EPA)Forme juridique Établissement public national à caractère administratifDomaine d'activité Éducation, Fran…

العلاقات الإثيوبية البليزية إثيوبيا بليز   إثيوبيا   بليز تعديل مصدري - تعديل   العلاقات الإثيوبية البليزية هي العلاقات الثنائية التي تجمع بين إثيوبيا وبليز.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة إثيوبي…

JIN 「Boy With Luv」のミュージックビデオ撮影時のJIN(2019年3月撮影)基本情報原語名 진出生名 金碩珍(キム・ソクジン、김석진) 生誕 (1992-12-04) 1992年12月4日(31歳)  大韓民国 京畿道安養市 出身地  大韓民国 京畿道果川市学歴 建国大学校 映画芸術学部ジャンル K-POP職業 歌手シンガーソングライター担当楽器 ボーカル活動期間 2013年 -レーベル HYBE事務所 BIGHIT MUSIC…

Chemical compound AlaproclateClinical dataRoutes ofadministrationOralATC codeN06AB07 (WHO) Legal statusLegal status In general: uncontrolled Identifiers IUPAC name 1-(4-Chlorophenyl)-2-methylpropan-2-yl 2-aminopropanoate CAS Number60719-82-6 N 60719-83-7 (hydrochloride)PubChem CID2081ChemSpider1997 YUNIIC4R42570ZOKEGGD02787 YChEMBLChEMBL36591 YCompTox Dashboard (EPA)DTXSID5045122 Chemical and physical dataFormulaC13H18ClNO2Molar mass255.74 g·mol−13D mod…

People who live in tunnels underground This article is about homeless people. For the film, see The Mole People (film). For the science fiction characters, see Mole people (fiction). For other uses, see Mole Men (disambiguation). The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (July 2018) (Learn how and…

Cet article concerne l'humain. Pour le cheval, voir Masse corporelle du cheval. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article traite essentiellement des aspects humains alors que le sujet est plus large. Il s’agit d’anthropocentrisme (janvier 2023). Discutez-en ou améliorez-le ! Pour de plus amples informations, voir le Guide contre l'anthropocentrisme. Cet article est une ébauche concernant la médecine. Vous pouvez partager vos conn…

Disambiguazione – Se stai cercando altri significati, vedi Trento (disambigua). Trentocomune Trento – VedutaTrento visione d'insieme LocalizzazioneStato Italia Regione Trentino-Alto Adige Provincia Trento AmministrazioneSindacoFranco Ianeselli (indipendente di centro-sinistra) dal 23-9-2020 TerritorioCoordinate46°04′N 11°07′E / 46.066667°N 11.116667°E46.066667; 11.116667 (Trento)Coordinate: 46°04′N 11°07′E / 46.066667…

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ранне…

CzechoslovakiaMost pointsRobert Reichel (40)IIHF codeTCHFirst international Czechoslovakia 6 - 4 Sweden  (Leningrad, Soviet Union; December 27, 1973)Last international Czechoslovakia 7 - 4 Canada  (Gävle, Sweden; January 4, 1993)Biggest win Czechoslovakia 21- 4 Austria  (Füssen, Germany; December 28, 1980)Biggest defeat Soviet Union 9 - 1 Czechoslovakia  (Karlstad, Sweden; December 30, 1978)IIHF World U20 ChampionshipAppearances20 (first in 1974)Best res…

Coordinate: 44°55′23.2″N 8°37′16.7″E / 44.923111°N 8.621306°E44.923111; 8.621306 Campo degli OrtiIl pollaioLa fabbrica del fango Cartolina che raffigura il campo e la tribuna principale (1924 circa). Informazioni generaliStato Italia Ubicazioneattuale via Milite Ignoto Inizio lavori1919 Inaugurazione19 ottobre 1919 Chiusura1929 ProprietarioAlessandria U.S. Informazioni tecnicheStrutturaPianta rettangolare CoperturaTribuna centrale Mat. del terrenotappeto erboso D…

John Stones Stones con l'Everton nel 2015 Nazionalità  Inghilterra Altezza 188 cm Peso 70 kg Calcio Ruolo Difensore e Centrocampista Squadra  Manchester City Carriera Giovanili 2001-2012 Barnsley Squadre di club1 2012-2013 Barnsley24 (0)2013-2016 Everton77 (1)2016- Manchester City159 (8) Nazionale 2012-2013 Inghilterra U-193 (0)2013 Inghilterra U-202 (0)2013-2015 Inghilterra U-2112 (0)2014- Inghilterra71 (3)  UEFA Nations League Bronzo Portogallo 2019  Eu…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

American National Standards InstituteLogo dari American National Standards Institute.SingkatanANSITanggal pendirian19 Oktober 1918; 105 tahun lalu (1918-10-19)[1]Status501(c)(3) swastaTipeOrganisasi nirlabaTujuanStandar nasionalKantor pusatWashington, D.C., U.S.Jumlah anggota 125,000 perusahaan dan 3.5 juta profesional[2]Bahasa resmi InggrisPresiden dan CEOJoe BhatiaSitus webwww.ansi.org American National Standards Institute (ANSI /ˈænsi/ AN-see) adalah sebuah lembaga nirl…

International Radiation Protection AssociationAbbreviationIRPAFormation19 June 1965Region GlobalPresidentBernard le GuenVice-PresidentChristopher ClementWebsitewww.irpa.net The International Radiation Protection Association (IRPA) is an independent non-profit association of national and regional radiation protection societies, and its mission is to advance radiation protection throughout the world. It is the international professional association for radiation protection.[1] IRPA is reco…

Aubérivecomune Aubérive – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneMourmelon-Vesle et Monts de Champagne TerritorioCoordinate49°12′18″N 4°25′02″E / 49.205°N 4.417222°E49.205; 4.417222 (Aubérive)Coordinate: 49°12′18″N 4°25′02″E / 49.205°N 4.417222°E49.205; 4.417222 (Aubérive) Altitudine113 m s.l.m. Superficie26,17 km² Abitanti208[1] (2009) De…

Ancient coin in Greece Silver statersAn early Archaic silver stater from Corinth, 555–515 BC. Obverse: Pegasus flying left, koppa below. Reverse: quadripartite incuseSilver stater from Delphi, 338/6–334/3 BC. Obverse: head of Demeter left, wearing grain-ear wreath and veil. Reverse: Apollo seated left on omphalos, tripod to left, ΑΜΦΙΚΤΙΟΝΩΝ around. The stater (/ˈsteɪtər, stɑːˈtɛər/;[1] Ancient Greek: στατήρ, pronounced [statɛ̌ːr], romani…

Kembali kehalaman sebelumnya