Logarithmic Schrödinger equation
In theoretical physics , the logarithmic Schrödinger equation (sometimes abbreviated as LNSE or LogSE ) is one of the nonlinear modifications of Schrödinger's equation , first proposed by Gerald H. Rosen in its relativistic version (with D'Alembertian instead of Laplacian and first-order time derivative) in 1969.[ 1] It is a classical wave equation with applications to extensions of quantum mechanics ,[ 2] [ 3] [ 4] quantum optics ,[ 5] nuclear physics ,[ 6] [ 7] transport and diffusion phenomena,[ 8] [ 9] open quantum systems and information theory ,[ 10] [ 11]
[ 12] [ 13] [ 14] [ 15] effective quantum gravity and physical vacuum models[ 16] [ 17] [ 18] [ 19] and theory of superfluidity and Bose–Einstein condensation .[ 20] [ 21] It is an example of an integrable model .
The equation
The logarithmic Schrödinger equation is a partial differential equation . In mathematics and mathematical physics one often uses its dimensionless form:
i
∂ ∂ -->
ψ ψ -->
∂ ∂ -->
t
+
∇ ∇ -->
2
ψ ψ -->
+
ψ ψ -->
ln
-->
|
ψ ψ -->
|
2
=
0.
{\displaystyle i{\frac {\partial \psi }{\partial t}}+\nabla ^{2}\psi +\psi \ln |\psi |^{2}=0.}
for the complex-valued function ψ = ψ (x , t ) of the particles position vector x = (x , y , z ) at time t , and
∇ ∇ -->
2
ψ ψ -->
=
∂ ∂ -->
2
ψ ψ -->
∂ ∂ -->
x
2
+
∂ ∂ -->
2
ψ ψ -->
∂ ∂ -->
y
2
+
∂ ∂ -->
2
ψ ψ -->
∂ ∂ -->
z
2
{\displaystyle \nabla ^{2}\psi ={\frac {\partial ^{2}\psi }{\partial x^{2}}}+{\frac {\partial ^{2}\psi }{\partial y^{2}}}+{\frac {\partial ^{2}\psi }{\partial z^{2}}}}
is the Laplacian of ψ in Cartesian coordinates . The logarithmic term
ψ ψ -->
ln
-->
|
ψ ψ -->
|
2
{\displaystyle \psi \ln |\psi |^{2}}
has been shown indispensable in determining the speed of sound scales as the cubic root of pressure for Helium-4 at very low temperatures.[ 22] This logarithmic term is also needed for cold sodium atoms.[ 23] In spite of the logarithmic term, it has been shown in the case of central potentials, that even for non-zero angular momentum, the LogSE retains certain symmetries similar to those found in its linear counterpart, making it potentially applicable to atomic and nuclear systems.[ 24]
The relativistic version of this equation can be obtained by replacing the derivative operator with the D'Alembertian , similarly to the Klein–Gordon equation . Soliton-like solutions known as Gaussons figure prominently as analytical solutions to this equation for a number of cases.
See also
References
^ Rosen, Gerald (1969). "Dilatation Covariance and Exact Solutions in Local Relativistic Field Theories". Physical Review . 183 (5): 1186– 1188. Bibcode :1969PhRv..183.1186R . doi :10.1103/PhysRev.183.1186 . ISSN 0031-899X .
^ Bialynicki-Birula, Iwo; Mycielski, Jerzy (1976). "Nonlinear wave mechanics". Annals of Physics . 100 (1– 2): 62– 93. Bibcode :1976AnPhy.100...62B . doi :10.1016/0003-4916(76)90057-9 . ISSN 0003-4916 .
^ Białynicki-Birula, Iwo; Mycielski, Jerzy (1975). "Uncertainty relations for information entropy in wave mechanics" . Communications in Mathematical Physics . 44 (2): 129– 132. Bibcode :1975CMaPh..44..129B . doi :10.1007/BF01608825 . ISSN 0010-3616 . S2CID 122277352 . Archived from the original on 2021-02-08. Retrieved 2024-12-24 .
^ Bialynicki-Birula, Iwo; Mycielski, Jerzy (1979). "Gaussons: Solitons of the Logarithmic Schrödinger Equation". Physica Scripta . 20 (3– 4): 539– 544. Bibcode :1979PhyS...20..539B . doi :10.1088/0031-8949/20/3-4/033 . ISSN 0031-8949 . S2CID 250833292 .
^ Buljan, H.; Šiber, A.; Soljačić, M.; Schwartz, T.; Segev, M.; Christodoulides, D. N. (2003). "Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media" . Physical Review E . 68 (3): 036607. Bibcode :2003PhRvE..68c6607B . doi :10.1103/PhysRevE.68.036607 . ISSN 1063-651X . PMID 14524912 . S2CID 831827 . Archived from the original on 2020-03-05. Retrieved 2019-12-10 .
^ Hefter, Ernst F. (1985). "Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics". Physical Review A . 32 (2): 1201– 1204. Bibcode :1985PhRvA..32.1201H . doi :10.1103/PhysRevA.32.1201 . ISSN 0556-2791 . PMID 9896178 .
^ Kartavenko, V. G.; Gridnev, K. A.; Greiner, W. (1998). "Nonlinear Effects in Nuclear Cluster Problem". International Journal of Modern Physics E . 07 (2): 287– 299. arXiv :nucl-th/9907015 . Bibcode :1998IJMPE...7..287K . doi :10.1142/S0218301398000129 . ISSN 0218-3013 . S2CID 19009168 .
^ Martino, S. De; Falanga, M; Godano, C; Lauro, G (2003). "Logarithmic Schrödinger-like equation as a model for magma transport". Europhysics Letters (EPL) . 63 (3): 472– 475. Bibcode :2003EL.....63..472D . doi :10.1209/epl/i2003-00547-6 . ISSN 0295-5075 . S2CID 250736155 .
^ Hansson, T.; Anderson, D.; Lisak, M. (2009). "Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis". Physical Review A . 80 (3): 033819. Bibcode :2009PhRvA..80c3819H . doi :10.1103/PhysRevA.80.033819 . ISSN 1050-2947 .
^ Yasue, Kunio (1978). "Quantum mechanics of nonconservative systems". Annals of Physics . 114 (1– 2): 479– 496. Bibcode :1978AnPhy.114..479Y . doi :10.1016/0003-4916(78)90279-8 . ISSN 0003-4916 .
^ Lemos, Nivaldo A. (1980). "Dissipative forces and the algebra of operators in stochastic quantum mechanics". Physics Letters A . 78 (3): 239– 241. Bibcode :1980PhLA...78..239L . doi :10.1016/0375-9601(80)90080-8 . ISSN 0375-9601 .
^ Brasher, James D. (1991). "Nonlinear wave mechanics, information theory, and thermodynamics". International Journal of Theoretical Physics . 30 (7): 979– 984. Bibcode :1991IJTP...30..979B . doi :10.1007/BF00673990 . ISSN 0020-7748 . S2CID 120250281 .
^ Schuch, Dieter (1997). "Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems". Physical Review A . 55 (2): 935– 940. Bibcode :1997PhRvA..55..935S . doi :10.1103/PhysRevA.55.935 . ISSN 1050-2947 .
^ M. P. Davidson, Nuov. Cim. B 116 (2001) 1291.
^ López, José L. (2004). "Nonlinear Ginzburg-Landau-type approach to quantum dissipation". Physical Review E . 69 (2): 026110. Bibcode :2004PhRvE..69b6110L . doi :10.1103/PhysRevE.69.026110 . ISSN 1539-3755 . PMID 14995523 .
^ Zloshchastiev, K. G. (2010). "Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences". Gravitation and Cosmology . 16 (4): 288– 297. arXiv :0906.4282 . Bibcode :2010GrCo...16..288Z . doi :10.1134/S0202289310040067 . ISSN 0202-2893 . S2CID 119187916 .
^ Zloshchastiev, Konstantin G. (2011). "Vacuum Cherenkov effect in logarithmic nonlinear quantum theory". Physics Letters A . 375 (24): 2305– 2308. arXiv :1003.0657 . Bibcode :2011PhLA..375.2305Z . doi :10.1016/j.physleta.2011.05.012 . ISSN 0375-9601 . S2CID 118152360 .
^ Zloshchastiev, K.G. (2011). "Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory". Acta Physica Polonica B . 42 (2): 261– 292. arXiv :0912.4139 . Bibcode :2011AcPPB..42..261Z . doi :10.5506/APhysPolB.42.261 . ISSN 0587-4254 . S2CID 118152708 .
^ Scott, T.C.; Zhang, Xiangdong; Mann, Robert; Fee, G.J. (2016). "Canonical reduction for dilatonic gravity in 3 + 1 dimensions". Physical Review D . 93 (8): 084017. arXiv :1605.03431 . Bibcode :2016PhRvD..93h4017S . doi :10.1103/PhysRevD.93.084017 .
^ Avdeenkov, Alexander V; Zloshchastiev, Konstantin G (2011). "Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent". Journal of Physics B: Atomic, Molecular and Optical Physics . 44 (19): 195303. arXiv :1108.0847 . Bibcode :2011JPhB...44s5303A . doi :10.1088/0953-4075/44/19/195303 . ISSN 0953-4075 . S2CID 119248001 .
^ Zloshchastiev, Konstantin G. (2019). "Temperature-driven dynamics of quantum liquids: Logarithmic nonlinearity, phase structure and rising force". Int. J. Mod. Phys. B . 33 (17): 1950184. arXiv :2001.04688 . Bibcode :2019IJMPB..3350184Z . doi :10.1142/S0217979219501844 . S2CID 199674799 .
^ Scott, T. C.; Zloshchastiev, K. G. (2019). "Resolving the puzzle of sound propagation in liquid helium at low temperatures". Low Temperature Physics . 45 (12): 1231– 1236. arXiv :2006.08981 . Bibcode :2019LTP....45.1231S . doi :10.1063/10.0000200 . S2CID 213962795 .
^ Zloshchastiev, Konstantin (2022). "Resolving the puzzle of sound propagation in a dilute Bose–Einstein condensate". International Journal of Modern Physics B . 36 (20): 2250121. arXiv :2211.10570 . Bibcode :2022IJMPB..3650121Z . doi :10.1142/S0217979222501211 . S2CID 249262506 .
^ Shertzer, J. ; Scott, T.C. (2020). "Solution of the 3D logarithmic Schrödinger equation with a central potential" . J. Phys. Commun . 4 (6): 065004. Bibcode :2020JPhCo...4f5004S . doi :10.1088/2399-6528/ab941d .
External links