Share to: share facebook share twitter share wa share telegram print page

Meerwein–Ponndorf–Verley reduction

Meerwein–Ponndorf–Verley reduction
Named after Hans Meerwein
Wolfgang Ponndorf
Albert Verley
Reaction type Organic redox reaction
Identifiers
Organic Chemistry Portal meerwein-ponndorf-verley-reduction
RSC ontology ID RXNO:0000089

The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol.[1] The advantages of the MPV reduction lie in its high chemoselectivity and its use of a cheap environmentally friendly metal catalyst. MPV reductions have been described as "obsolete" owing to the development of sodium borohydride and related reagents.[2]

Meerwein–Ponndorf–Verley reduction
Meerwein–Ponndorf–Verley reduction
Figure 1, Exchange of carbonyl oxidation states in the presence of aluminium isopropoxide.

The MPV reduction was independently discovered by Albert Verley and the team of Hans Meerwein and Rudolf Schmidt in 1925. They found that a mixture of aluminium ethoxide and ethanol could reduce aldehydes to their alcohols.[3][4] Ponndorf applied the reaction to ketones and upgraded the catalyst to aluminium isopropoxide in isopropanol.[5]

Mechanism

The MPV reduction is believed to go through a catalytic cycle involving a six-member ring transition state as shown in Figure 2. Starting with the aluminium alkoxide 1, a carbonyl oxygen is coordinated to achieve the tetra coordinated aluminium intermediate 2. Between intermediates 2 and 3 the hydride is transferred to the carbonyl from the alkoxy ligand via a pericyclic mechanism. At this point the new carbonyl dissociates and gives the tricoordinated aluminium species 4. Finally, an alcohol from solution displaces the newly reduced carbonyl to regenerate the catalyst 1.

Meerwein–Ponndorf–Verley reduction catalytic cycle
Meerwein–Ponndorf–Verley reduction catalytic cycle
Figure 2, Catalytic cycle of Meerwein–Ponndorf–Verley reduction

Each step in the cycle is reversible. The reaction is driven by the thermodynamic properties of the intermediates and the products. Several other mechanisms have been proposed for this reaction, including a radical mechanism as well as a mechanism involving an aluminium hydride species. The commonly accepted direct hydride transfer is supported by experimental and theoretical data.[6]

Chemoselectivity

One of the great draws of the Meerwein–Ponndorf–Verley reduction is its chemoselectivity. Aldehydes are reduced before ketones allowing for a measure of control over the reaction. If it is necessary to reduce one carbonyl in the presence of another, the common carbonyl protecting groups may be employed. Groups, such as alkenes and alkynes, that normally pose a problem for reduction by other means have no reactivity under these conditions.[7]

Stereoselectivity

The aluminium based Meerwein–Ponndorf–Verley reduction can be performed on prochiral ketones leading to chiral alcohols. The three main ways to achieve the asymmetric reduction is by use of a chiral alcohol hydride source, use of an intramolecular MPV reduction, or use of a chiral ligand on the aluminium alkoxide.

One method of achieving the asymmetric MPV reduction is with the use of chiral hydride donating alcohols. The use of chiral alcohol (R)-(+)-sec-o-bromophen-ethyl alcohol gave 82%ee (percent enantiomeric excess) in the reduction of 2-chloroacetophenone.[8] This enantioselection is due to the sterics of the two phenol groups in the six membered transition state as shown in Figure 3. In Figure 3, 1 is favored over 2 due to the large steric effect in 2 from the two phenyl groups.

Meerwein–Ponndorf–Verley reduction with chiral alcohol
Meerwein–Ponndorf–Verley reduction with chiral alcohol
Figure 3, Transition states of MPV reduction with a chiral alcohol

The use of an intramolecular MPV reduction can give good enantiopurity.[9] By tethering the ketone to the hydride source only one transition state is possible (Figure 4) leading to the asymmetric reduction. This method, however, has the ability to undergo the reverse Oppenauer oxidation due to the proximity of the two reagents. Thus the reaction runs under thermodynamic equilibrium with the ratio of the products related to their relative stabilities. After the reaction is run the hydride-source portion of the molecule can be removed.

Intramolecular Meerwein–Ponndorf–Verley reduction
Intramolecular Meerwein–Ponndorf–Verley reduction
Figure 4, Transition state of intramolecular MPV reduction

Chiral ligands on the aluminium alkoxide can affect the stereochemical outcome of the MPV reduction. This method lead to the reduction of substituted acetophenones in up to 83%ee [10](Figure 5). The appeal of this method is that it uses a chiral ligand as opposed to a stoichiometric source of chirality. The low selectivity of this method is attributed to the shape of the transition state. It has been shown that the transition state is a planar six member transition state. This is different than the believed Zimmerman-Traxler model like transition state.[6]

Meerwein–Ponndorf–Verley reduction with chiral ligand
Meerwein–Ponndorf–Verley reduction with chiral ligand
Figure 5, MPV reaction with chiral ligand

Scope

Several problems restrict the use of the Meerwein–Ponndorf–Verley reduction compared to the use of other reducing agents. The stereochemical control is seriously limited. Often a large amount of aluminium alkoxide is needed when using commercial reagent, and there are several known side reactions.

While commercial aluminium isopropoxide is available, the use of it often requires catalyst loadings of up to 100-200 mol%. This hinders the use of the MPV reduction on scale. Aluminium alkoxides made in situ from trimethyl aluminium reagents have far better activity requiring as little as 10% loading. The activity difference is believed to be due to the large aggregation state of the commercially available product.[11]

Several side reactions are known to occur. In the case of ketones and especially aldehydes aldol condensations have been observed. Aldehydes with no α-hydrogens can undergo the Tishchenko reaction.[7] Finally, in some cases the alcohol generated by the reduction can be dehydrated giving an alkyl carbon.

Variations

The Meerwein–Ponndorf–Verley reduction has been used in the synthesis of chiral amines from ketimines using a chiral alkoxide. The addition of a phosphinoyl group to the nitrogen of the ketimine allowed for high enantioselectivity up to 98%ee.[12]

Work has been done in the use of lanthanides and transition metals for the Meerwein–Ponndorf–Verley reduction. Both ruthenium and samarium have shown high yields and high stereoselectivity in the reduction of carbonyls to alcohols.[13][14] The ruthenium catalyst has been shown, however, to go through a ruthenium hydride intermediate. The Meerwein–Ponndorf–Verley reduction has also been effected with synthetically useful yield by plutonium (III) isopropoxide.[15]

The standard MPV reduction is a homogeneous reaction several heterogeneous reactions have been developed.[16]

See also

References

  1. ^ Wilds, A. L. (1944). "Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction)". Organic Reactions. 2 (5): 178–223. doi:10.1002/0471264180.or002.05.
  2. ^ Brown, Herbert C.; Ramachandran, P. Veeraraghavan (1996). "Sixty Years of Hydride Reductions". Reductions in Organic Synthesis. ACS Symposium Series. Vol. 641. pp. 1–30. doi:10.1021/bk-1996-0641.ch001. ISBN 9780841233812.
  3. ^ Meerwein, Hans; Schmidt, Rudolf (1925). "Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen". Justus Liebigs Annalen der Chemie. 444 (1): 221–238. doi:10.1002/jlac.19254440112.
  4. ^ Verley, A. (1925). "Exchange of functional groups between two molecules. Exchange of alcohol and aldehyde groups". Bull. Soc. Chim. Fr. 37: 537–542.
  5. ^ Wolfgang Ponndorf (1926). "Der reversible Austausch der Oxydationsstufen zwischen Aldehyden oder Ketonen einerseits und primären oder sekundären Alkoholen anderseits". Angewandte Chemie. 39 (5): 138–143. Bibcode:1926AngCh..39..138P. doi:10.1002/ange.19260390504.
  6. ^ a b R. Cohen; C. R. Graves; S. T. Nguyen, J. M. L. Martin & M. A. Ratner (2004). "The Mechanism of Aluminum-Catalyzed Meerwein-Schmidt-Ponndorf-Verley Reduction of Carbonyls to alcohols". Journal of the American Chemical Society. 126 (45): 14796–14803. doi:10.1021/ja047613m. PMID 15535705.
  7. ^ a b De Graauw, C. F.; Peters, J. A.; Van Bekkum, H.; Huskens, J. (1994). "Meerwein-Ponndorf-Verley Reductions and Oppenauer Oxidations: An Integrated Approach". Synthesis. 1994 (10): 1007. doi:10.1055/s-1994-25625.
  8. ^ T. Ooi; T. Miura; K. Marouka (1998). "Highly Efficient, Catalytic Meerwein–Ponndorf–Verler Reduction with a Novel Bidentate Aluminum Catalyst". Angew. Chem. Int. Ed. 37 (17): 2347–2349. doi:10.1002/(SICI)1521-3773(19980918)37:17<2347::AID-ANIE2347>3.0.CO;2-U. PMID 29710956.
  9. ^ M. Fujita; Y. Takarada; T. Sugimura, A. Tai (1997). "Reliable chiral transfer through thermodynamic equilibrium of the intramolecular Meerwein–Ponndorf–Verley reduction and Oppenauer oxidation". Chemical Communications (17): 1631–1632. doi:10.1039/A704341D.
  10. ^ E. J. Campbell; H. Zhou; S. T. Nguyen (2002). "The Asymmetric Meerwein-Schmidt-Ponndorf-Verley Reduction of Prochiral Ketones with iPrOH Catalyzed by Al Catalysts". Angew. Chem. Int. Ed. 41 (6): 1020–1022. doi:10.1002/1521-3773(20020315)41:6<1020::AID-ANIE1020>3.0.CO;2-S. PMID 12491299.
  11. ^ E. J. Campbell; H. Zhou; S. T. Nguyen (2001). "Catalytic Meerwein-Pondorf-Verley Reduction by Simple Aluminum Complexes". Organic Letters. 3 (15): 2391–2393. doi:10.1021/ol0162116. PMID 11463324.
  12. ^ C. R. Graves; K. A. Scheidt; S. T. Nguyen (2006). "Enantioselective MSPV Reduction of Ketimines Using 2-propanol and (BINOL)AlIII". Organic Letters. 8 (6): 1229–1232. doi:10.1021/ol060110w. PMID 16524310.
  13. ^ D. A. Evans; S. G. Nelson; M. R. Gagne; A. R. Muci (1993). "A Chiral Samarium-Based Catalyst for the Asymmetric Meerwein–Ponndorf–Verley Reduction". Journal of the American Chemical Society. 115 (21): 9800–9801. doi:10.1021/ja00074a057.
  14. ^ K. Haack; S. Hashiguchi; A. Fujii; T. Ikariya; R. Noyori (1997). "The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between alcohols and Ketones". Angew. Chem. Int. Ed. Engl. 36 (3): 285–288. doi:10.1002/anie.199702851.
  15. ^ Benjamin P. Warner, Joseph A. D’Alessio, Arthur N. Morgan III; d'Alessio; Morgan; Burns; Schake; Watkin (2000). "Plutonium(III)-catalyzed Meerwein –Ponndorf –Verley reactions". Inorganica Chimica Acta. 309 (1–2): 45–48. doi:10.1016/S0020-1693(00)00227-9.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ G.K. Chuah; S. Jaenicke; Y.Z. Zhu; S.H. Liu (2006). "Meerwein–Ponndorf–Verley reduction over Heterogeneous Catalysts". Current Organic Chemistry. 10 (13): 1639–1654. doi:10.2174/138527206778249621.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya