Share to: share facebook share twitter share wa share telegram print page

Multimedia

Examples of individual content forms that can be combined in multimedia
Still images
Video footage

Multimedia is a form of communication that uses a combination of different content forms, such as writing, audio, images, animations, or video, into a single interactive presentation, in contrast to traditional mass media, such as printed material or audio recordings, which feature little to no interaction between users. Popular examples of multimedia include video podcasts, audio slideshows, and animated videos. Multimedia also contains the principles and application of effective interactive communication, such as the building blocks of software, hardware, and other technologies.

The five main building blocks of multimedia are text, image, audio, video, and animation. The first building block of multimedia is the image, which dates back 15,000 to 10,000 B.C. with concrete evidence found in the Lascaux caves in France. The second building block of multimedia is writing, which was first scribed in stone or on clay tablets and was mostly about three things. Property, conquest, and religion. Writing was soon abstracted from visual images into symbols that represented the sounds we make with our mouths. Thanks to the Egyptians, writing was evolved and transferred from stone to Papyrus. A cheaper but more fragile canvas derived from strips of the papyrus root grown on the Nile River.[1]

Multimedia can be recorded for playback on computers, laptops, smartphones, and other electronic devices. In the early years of multimedia, the term "rich media" was synonymous with interactive multimedia. Over time, hypermedia extensions brought multimedia to the World Wide Web, and streaming services became more common.

There is also a more modern history of multimedia, starting from the 1960s around the time the term was widely popularized in usage.[2]

Terminology

The term multimedia was coined by singer and artist Bob Goldstein (later 'Bobb Goldsteinn') to promote the July 1966 opening of his "Lightworks at L'Oursin" show in Southampton, New York, Long Island.[3] Goldstein was perhaps aware of an American artist named Dick Higgins, who had two years previously discussed a new approach to art-making he called "intermedia".[4]

On August 10, 1966, Richard Albarino of Variety borrowed the terminology, reporting: "Brainchild of song scribe-comic Bob ('Washington Square') Goldstein, the 'Lightworks' is the latest multi-media music-cum-visuals to debut as discothèque fare."[5] Two years later, in 1968, the term "multimedia" was re-appropriated to describe the work of a political consultant, David Sawyer, the husband of Iris Sawyer—one of Goldstein's producers at L'Oursin.

Multimedia (multi-image) setup for the 1988 Ford New Car Announcement Show, August 1987, Detroit, MI

In the intervening forty years, the word has taken on different meanings. In the late 1970s, the term referred to presentations consisting of multi-projector slide shows timed to an audio track. However, by the 1990s, 'multimedia' had taken on its current meaning.

In the 1993 first edition of Multimedia: Making It Work, Tay Vaughan declared, "Multimedia is any combination of text, graphic art, sound, animation, and video that is delivered by computer. When you allow the user – the viewer of the project – to control what and when these elements are delivered, it is interactive multimedia. When you provide a structure of linked elements through which the user can navigate, interactive multimedia becomes hypermedia."[6] This book contained the Tempra Show software.[7] This was a later, rebranded version of the 1985 DOS multimedia software VirtulVideo Producer, about which the Smithsonian declared, "It is one of the first, if not the first, multi-media authoring systems on the market."[8]

The German language society Gesellschaft für deutsche Sprache recognized the word's significance and ubiquitousness in the 1990s by awarding it the title of German 'Word of the Year' in 1995.[9] The institute summed up its rationale by stating, "[Multimedia] has become a central word in the wonderful new media world".[10]

In common usage, multimedia refers to the usage of multiple media of communication, including video, still images, animation, audio, and text, in such a way that they can be accessed interactively. Video, still images, animation, audio, and written text are the building blocks on which multimedia takes shape. In the 1990s, some computers were called "multimedia computers" because they represented advances in graphical and audio quality, such as the Amiga 1000, which could produce 4096 colors (12-bit color), outputs for TVs and VCRs, and four-voice stereo audio.[11] Changes in removable storage technology during this time were also important, as the standard CD-ROM can hold on average 700 megabytes of data, while the maximum size a 3.5-inch floppy disk can hold is 2.8 megabytes, with an average of 1.44 megabytes.[12] Greater storage allowed for larger digital media files and therefore more complex multimedia.

The term "video", if not used exclusively to describe motion photography, is ambiguous in multimedia terminology. Video is often used to describe the file format, delivery format, or presentation format instead of "footage" which is used to distinguish motion photography from "animation" of rendered motion imagery. Multiple forms of information content are often not considered modern forms of presentation, such as audio or video. Likewise, single forms of information content with single methods of information processing (e.g., non-interactive audio) are often called multimedia, perhaps to distinguish static media from active media. In the fine arts, for example, Leda Luss Luyken's ModulArt brings two key elements of musical composition and film into the world of painting: variation of a theme and movement of and within a picture, making ModulArt an interactive multimedia form of art. Performing arts may also be considered multimedia, considering that performers and props are multiple forms of both content and media.

In modern times, a multimedia device can be referred to as an electronic device, such as a smartphone, a video game system, or a computer. Each and every one of these devices has a main function but also has other uses beyond their intended purpose, such as reading, writing, recording video and audio, listening to music, and playing video games. This has led them to be called "multimedia devices." While previous media was always local, many are now handled through web-based solutions, particularly streaming.

Major characteristics

Multimedia presentations are presentations featuring multiple types of media. The different types of media can include text, graphics, audio, video and animations. These different types of media convey information to their target audience and effectively communicate with them. Videos are a great visual example to use in multimedia presentations because they can create visual aids to the presenter's ideas. They are commonly used among education and many other industries to benefit students and workers, as they effectively retain chunks of information in a limited amount of time and can be stored easily. Another example is charts and graphs, as the presenters can show their audience the trends using data associated with their researches. This provides the audience a visual idea of a company's capabilities and performances.[13] Audio also helps people understand the message being presented, as most modern videos are combined with audio to increase its efficiency, while animations are made to simplify things from the presenter's perspective. These technological methods allow efficient communication and understanding across a wide range of audiences (with an even wider range of abilities) throughout different fields.

Multimedia games and simulations may be used in a physical environment with special effects, with multiple users in an online network, or locally with an offline computer, game system, simulator, virtual reality, or augmented reality.

The various formats of technological or digital multimedia may be intended to enhance the users' experience, for example, to make it easier and faster to convey information. Or in entertainment or art, combine an array of artistic insights that include elements from different art forms to engage, inspire, or captivate an audience.

A lasershow is a live multimedia performance.

Enhanced levels of interactivity are made possible by combining multiple forms of media content. Online multimedia is increasingly becoming object-oriented and data-driven, enabling applications with collaborative end-user innovation and personalization on multiple forms of content over time. Examples of these range from multiple forms of content on Web sites like photo galleries with both images (pictures) and titles (text) user-updated to simulations whose coefficients, events, illustrations, animations, or videos are modifiable, allowing the multimedia "experience" to be altered without reprogramming. In addition to seeing and hearing, haptic technology enables virtual objects to be felt. Emerging technology involving illusions of taste and smell may also enhance the multimedia experience.

Categorization

Multimedia may be broadly divided into linear and non-linear categories:

  • Linear active content progresses often without any navigational control, only focusing on the user to watch the entire piece by involving higher levels of emotional and sensory stimulation based on what's being shown as a cinema presentation;
  • Non-linear uses interactivity to control progress as with a video game or self-paced computer-based training so that the actions made will be based on how the user interacts within the simulated world. Hypermedia is an example of non-linear content.

Multimedia presentations can be live or recorded:

  • A recorded presentation may allow interactivity via a navigation system;
  • A live multimedia presentation may allow interactivity via an interaction with the presenter or performer.

Usage/application

A presentation using PowerPoint. Corporate presentations may combine all forms of media content.

Multimedia finds its application in various areas, including, but not limited to, advertisements, art, education, entertainment, engineering, medicine, mathematics, business, scientific research, and spatial temporal applications. Several examples are as follows:

Creative industries

Creative industries use multimedia for a variety of purposes, ranging from fine arts, entertainment, commercial art, journalism, to media and software services provided for any of the industries listed below. An individual multimedia designer may cover the spectrum throughout their career. Requests for their skills range from technical to analytical to creative.

Commercial uses

Much of the electronic, old, and new media used by commercial artists in multimedia. Advertising companies rely heavily on social interfaces and television to promote products. Using these platforms, they are able to express their message or persuade a targeted audience. Business to business and interoffice communications are often developed by creative services firms for advanced multimedia presentations beyond simple slide shows to sell ideas or liven up training. Commercial multimedia developers may be hired to design for governmental services and nonprofit services applications as well. In addition, the prominence of data mining within multimedia platforms in order to adjust marketing techniques based on the data they mine is a crucial and notable practice of commercial advertisement to efficiently understand the demographic of a target audience.[14] In recent years, a new trend of multimedia has arrived: a new sort of digital billboard placed on the side of buildings and usually wrapped around the side of them. These clips are made at differing angles to trick the brain into seeing them as 3-dimensional, like they're leaving the billboard entirely. This makes them eye-catching and therefore more likely to draw people's attention, which is, of course, very good for commercial purposes.

Entertainment and fine arts

Multimedia is heavily used in the entertainment industry, especially to develop special effects in movies and animations (VFX, 3D animation, etc.). Multimedia games are a popular pastime and are software programs available either as CD-ROMs or online. Video games are considered multimedia, as they meld animation, audio, and interactivity to give the player an immersive experience. While video games can vary in terms of animation style or audio type, the element of interactivity makes them a striking example of interactive multimedia. Interactive multimedia refers to multimedia applications that allow users to actively participate instead of just sitting by as passive recipients of information. In the arts, there are multimedia artists who blend techniques using different media that in some way incorporate interaction with the viewer. Another approach entails the creation of multimedia that can be displayed in a traditional fine arts arena, such as an art gallery. Video has become an intrinsic part of many concerts and theatrical productions in the modern era and has spawned content creation opportunities for many media professionals. Although multimedia display material may be volatile, the survivability of the content is as strong as any traditional medium.

Education

In education, multimedia is used to produce computer-based training courses (popularly called CBTs) and reference books like encyclopedias and almanacs. A CBT lets the user go through a series of presentations, text about a particular topic, and associated illustrations in various information formats.

Learning theory in the past decade has expanded dramatically because of the introduction of multimedia. Several lines of research have evolved, e.g., cognitive load and multimedia learning.

From multimedia learning (MML) theory, David Roberts has developed a large group lecture practice using PowerPoint and based on the use of full-slide images in conjunction with a reduction of visible text (all text can be placed in the notes view' section of PowerPoint).[15] The method has been applied and evaluated in 9 disciplines. In each experiment, students' engagement and active learning have been approximately 66% greater than with the same material being delivered using bullet points, text, and speech, corroborating a range of theories presented by multimedia learning scholars like Sweller and Mayer.[16] The idea of media convergence is also becoming a major factor in education, particularly higher education. Defined as separate technologies such as voice (and telephony features), data (and productivity applications), and video that now share resources and interact with each other, media convergence is rapidly changing the curriculum in universities all over the world. Higher education has been implementing the use of social media applications such as Twitter, YouTube, Facebook, etc. to increase student collaboration and develop new processes in how information can be conveyed to students.[17]

Educational technology

Interactive multimedia educational game

Multimedia provides students with an alternate means of acquiring knowledge designed to enhance teaching and learning through various media and platforms.[citation needed] In the 1960s, technology began to expand into classrooms through devices such as screens and telewriters.[18] This technology allows students to learn at their own pace and gives teachers the ability to observe the individual needs of each student. The capacity for multimedia to be used in multi-disciplinary settings is structured around the idea of creating a hands-on learning environment through the use of technology.[citation needed] Lessons can be tailored to the subject matter as well as personalized to the students' varying levels of knowledge on the topic. Learning content can be managed through activities that utilize and take advantage of multimedia platforms.[citation needed] This kind of usage of modern multimedia encourages interactive communication between students and teachers and opens feedback channels, introducing an active learning process, especially with the prevalence of new media and social media.[19] Technology has impacted multimedia as it is largely associated with the use of computers or other electronic devices and digital media due to its capabilities concerning research, communication, problem-solving through simulations, and feedback opportunities.[20] The innovation of technology in education through the use of multimedia allows for diversification among classrooms to enhance the overall learning experience for students.[21]

Within education, video games, specifically fast-paced action games, are able to play a big role in improving cognitive abilities involving attention, task switching, and resistance to distractors. Research also shows that, though video games may take time away from schoolwork, implementing games into the school curriculum has an increased probability of moving attention from games to curricular goals. [22]

Social work

Multimedia is a robust education methodology within the social work context. The five different types of multimedia that support the education process are narrative media, interactive media, communicative media, adaptive media, and productive media. Contrary to long-standing belief, multimedia technology in social work education existed before the prevalence of the internet. It takes the form of images, audio, and video into the curriculum.

First introduced to social work education by Seabury & Maple in 1993, multimedia technology is utilized to teach social work practice skills, including interviewing, crisis intervention, and group work. In comparison with conventional teaching methods, including face-to-face courses, multimedia education shortens transportation time, increases knowledge and confidence in a richer and more authentic context for learning, generates interaction between online users, and enhances understanding of conceptual materials for novice students.

In an attempt to examine the impact of multimedia technology on students' studies, A. Elizabeth Cauble & Linda P. Thurston conducted research in which Building Family Foundations (BFF), an interactive multimedia training platform, was utilized to assess social work students' reactions to multimedia technology on variables of knowledge, attitudes, and self-efficacy. The results state that respondents show a substantial increase in academic knowledge, confidence, and attitude. Multimedia also benefits students because it brings experts online, fits students' schedule, and allows students to choose courses that suit them.

Mayer's Cognitive Theory of Multimedia Learning suggests that "people learn more from words and pictures than from words alone." According to Mayer and other scholars, multimedia technology stimulates people's brains by implementing visual and auditory effects and thereby assists online users to learn efficiently. Researchers suggest that when users establish dual channels while learning, they tend to understand and memorize better. The mixed literature of this theory is still present in the fields of multimedia and social work.[23][24][25]

Language communication

With the spread and development of the English language around the world, multimedia has become an important way of communicating between different people and cultures. Multimedia technology creates a platform where language can be taught. The traditional form of teaching English as a Second Language in classrooms has drastically changed with the prevalence of technology, making it easier for students to obtain language learning skills. Multimedia motivates students to learn more languages through audio, visual, and animation support. It also helps create English contexts since an important aspect of learning a language is developing their grammar, vocabulary, and knowledge of pragmatics and genres. In addition, cultural connections in terms of forms, contexts, meanings, and ideologies have to be constructed.[citation needed] By improving thought patterns, multimedia develops students' communicative competence by improving their capacity to understand the language.[26] One of the studies, carried out by Izquierdo, Simard and Pulido, presented the correlation between "Multimedia Instruction (MI) and learners' second language (L2)"[27] and its effects on learning behavior. Their findings, based on Gardner's theory of the "socio-educational model of learner motivation and attitudes," show that there is easier access to language learning materials as well as increased motivation with MI along with the use of computer-assisted language learning.

Journalism

Newspaper companies all over the world are trying to embrace the new phenomenon by implementing its practices in their work. While some have been slow to come around, other major newspapers like The New York Times, USA Today, and The Washington Post are setting a precedent for the positioning of the newspaper industry in a globalized world. To keep up with the changing world of multimedia, journalistic practices are adopting and utilizing different multimedia functions through the inclusion of visuals such as varying audio, video, text, etc. in their writings.[28]

News reporting is not limited to traditional media outlets. Freelance journalists can use different new media to produce multimedia pieces for their news stories. It engages global audiences and tells stories with technology, which develops new communication techniques for both media producers and consumers. The Common Language Project, later renamed The Seattle Globalist, is an example of this type of multimedia journalism production.

Multimedia reporters who are mobile (usually driving around a community with cameras, audio and video recorders, and laptop computers) are often referred to as mojos, or mobile journalists.

Engineering

Software engineers may use multimedia in computer simulations for anything from entertainment to training, such as military or industrial training. Multimedia for software interfaces is often done as a collaboration between creative professionals and software engineers. Multimedia helps expand the teaching practices that can be found in engineering to allow for more innovative methods to not only educate future engineers but to help evolve the scope of understanding of where multimedia can be used in specialized engineer careers like software engineers.[29]

Multimedia is also allowing major car manufacturers, such as Ford and General Motors, to expand the design and safety standards of their cars. By using a game engine and virtual reality glasses, these companies are able to test the safety features and the design of the car before a prototype is even made. Building a car virtually reduces the time it takes to produce new vehicles, cutting down on the time needed to test designs and allowing the designers to make changes in real time. It also reduces expenses since, with a virtual car, making real-world prototypes is no longer needed.[30]

Mathematical and scientific research

In mathematical and scientific research, multimedia is mainly used for modeling and simulation. For example, a scientist can look at a molecular model of a particular substance and manipulate it to arrive at a new substance. Representative research can be found in journals such as the Journal of Multimedia. One well-known example of this being applied would be in the movie Interstellar, where Executive Director Kip Thorne helped create one of the most realistic depictions of a black hole in film. The visual effects team under Paul Franklin took Kip Thorne's mathematical data and applied it into their own visual effects engine called "Double Negative Gravitational Renderer," a.k.a. "Gargantua," to create a "real" black hole used in the final cut. Later on, the visual effects team went on to publish a black hole study.

Medicine

Medical professionals and students have a wide variety of ways to learn new techniques and procedures through interactive media, online courses, and lectures. The methods of conveying information to students have drastically evolved with the help of multimedia. From the 1800s to today, lessons are commonly taught using chalkboards. Projected aids, such as the epidiascope and slide projectors, were introduced into classrooms around the 1960s.[31] With the growing use of computers, the medical field has begun to incorporate new devices and procedures to assist in teaching students, performing procedures, and analyzing patient data. As well as providing that data in a meaningful way to the patients.[32]

Virtual reality

Air force officer using a VR headset to simulate piloting an aircraft

Virtual reality is a technology that creates a simulated environment, often using computer-generated imagery or a combination of real and virtual content, to immerse users in an interactive and lifelike experience. The aim of virtual reality is to make users feel as if they are physically present in a different environment, even though they are typically still physically located in the real world. Virtual reality finds applications across various fields, including gaming, education, healthcare, training, and entertainment. In gaming, users can be transported to fantastical worlds, experiencing games in a more immersive way. In education, VR can provide realistic simulations for training purposes, allowing users to practice skills in a risk-free environment. Healthcare professionals use VR for therapeutic purposes and medical training. The U.S. Air Force has shown using VR for training programs for their new pilots to simulate piloting an aircraft. This allows new pilots to learn in a safe environment and get comfortable before getting in a real aircraft.

Head-mounted display (HMD): Users wear a headset that covers their eyes and ears, providing visual and auditory stimuli. These headsets are equipped with screens that display the virtual environment, and some may also have built-in speakers or headphones for audio.

Motion tracking: Sensors track the user's movements, allowing them to interact with the virtual world. This can include head movements, hand gestures, and sometimes even full-body movements, enhancing the sense of immersion.

Input devices: Controllers or other input devices are used to interact with the virtual environment. These devices can simulate hands or tools, enabling users to manipulate objects or navigate within the virtual space.

Computer processing: Powerful computers or gaming consoles are often required to generate and render the complex graphics and simulations needed for a convincing virtual experience.

Augmented reality

Augmented reality overlays digital content or output onto the real world using media such as audio, animation, and text. Augmented reality became widely popular only in the 21st century; however, some of the earlier versions of such were things like the Sega Genesis Activator Controller back in 1992, which allowed users to literally stand in an octagon and control in-game movement with physical movement, or to stretch back even further, the R.O.B. NES Robot back in 1984, which, with its array of accessories, was able to also provide users with the sensation of holding a firearm. These multimedia input devices are among the earliest of the augmented reality devices, allowing users to input commands to facilitate a different user experience. A more modern example of augmented reality is Pokémon GO, a mobile game released on July 6, 2016, which allows users to see a Pokémon in a real-world environment.

See also

References

  1. ^ "Introduction to Computer Information Systems/Multimedia - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2023-01-22.
  2. ^ Multimedia: From Wagner to Virtual Reality, edited by Randall Packer and Ken Jordan, 2001. ISBN 9780393323757.
  3. ^ Badii, Atta; Fuschi, David; Khan, Ali; Adetoye, Adedayo (2009). "Accessibility-by-Design: A Framework for Delivery-Context-Aware Personalised Media Content Re-purposing". HCI and Usability for e-Inclusion. Lecture Notes in Computer Science. Vol. 5889. pp. 209–226. doi:10.1007/978-3-642-10308-7_14. ISBN 978-3-642-10307-0.
  4. ^ Matthew Zuras (June 3, 2010), Tech Art History, Part, Switched, archived from the original on September 30, 2018, retrieved August 27, 2012
  5. ^ Albarino, Richard (10 August 1966). "Goldstein's LightWorks at Southhampton". Variety. 213 (12).
  6. ^ Vaughan, Tay, 1993, Multimedia: Making It Work (first edition, ISBN 0-07-881869-9), Osborne/McGraw-Hill, Berkeley, pg. 3.
  7. ^ National Museum of American History. "Software, TEMPRA Media Author! and Documentation, Tempra Show Reference Guide". Smithsonian. Retrieved December 18, 2023.
  8. ^ National Museum of American History. "AT&T 6300 Microcomputer and VirtualVideo Producer Software". Smithsonian. Retrieved December 18, 2023.
  9. ^ Ein Jahr, ein (Un-)Wort! (in German) Spiegel Online
  10. ^ Variety, January 1–7, 1996.
  11. ^ "August 1994 / Commentary / R.I.P. Commodore 1954-1994". 1996-10-19. Archived from the original on 1996-10-19. Retrieved 2024-01-21.
  12. ^ Chang, Morris (2005). "Computer Architecture". The Electrical Engineering Handbook. pp. 323–334. doi:10.1016/B978-012170960-0/50027-X. ISBN 978-0-12-170960-0.
  13. ^ The Vibe Team. "Tips and Tools for Crafting a Multimedia Presentation". vibe.us. Vibe. Retrieved 20 September 2022.
  14. ^ Han, Jiawei; Kamber, Micheline; Pei, Jian (2012). "Data Mining Trends and Research Frontiers". Data Mining. pp. 585–631. doi:10.1016/B978-0-12-381479-1.00013-7. ISBN 978-0-12-381479-1.
  15. ^ Visual feasts of the mind: matching how we teach to how we learn | David Roberts | TEDxLoughboroughU, 2016-12-13, archived from the original on 2021-10-30, retrieved 2017-05-17
  16. ^ "David Roberts | Loughborough University - Academia.edu". lboro.academia.edu. Retrieved 2017-01-18.
  17. ^ Cao, Yingxia; Ajjan, Haya; Hong, Paul (July 2013). "Using social media applications for educational outcomes in college teaching: A structural equation analysis: Social media use in teaching". British Journal of Educational Technology. 44 (4): 581–593. doi:10.1111/bjet.12066.
  18. ^ Fletcher, Curtis (2 October 2017). "The school of tomorrow: promoting electronic multimedia education in the 1960s". History and Technology. 33 (4): 428–440. doi:10.1080/07341512.2018.1482592. S2CID 149685793.
  19. ^ Andresen, Bent B.; van den Brink, Katja (2013). 'Multimedia in Education' Curriculum. UNESCO. ISBN 978-5-7777-0556-3.
  20. ^ Collis, Betty (1991). "Anticipating the impact of multimedia in education: lessons from literature" (PDF). International Journal of Computers in Adult Education and Training. 2 (2): 136–149. OCLC 6893982757.
  21. ^ Pierce, Glenn L.; Cleary, Paul F. (July 2016). "The K-12 educational technology value chain: Apps for kids, tools for teachers and levers for reform". Education and Information Technologies. 21 (4): 863–880. doi:10.1007/s10639-014-9357-1. S2CID 7745071.
  22. ^ Tobias, Sigmund; Fletcher, J. D.; Bediou, Benoit; Wind, Alexander P.; Chen, Fei (2014). "Multimedia Learning with Computer Games". The Cambridge Handbook of Multimedia Learning. pp. 762–784. doi:10.1017/CBO9781139547369.037. ISBN 978-1-139-54736-9.
  23. ^ Ballantyne, Neil (September 2008). "Multimedia Learning and Social Work Education". Social Work Education. 27 (6): 613–622. doi:10.1080/02615470802201655. S2CID 144578023.
  24. ^ Cauble, A. Elizabeth; Thurston, Linda P. (July 2000). "Effects of Interactive Multimedia Training on Knowledge, Attitudes, and Self-Efficacy of Social Work Students". Research on Social Work Practice. 10 (4): 428–437. doi:10.1177/104973150001000404. S2CID 142893647.
  25. ^ Irby, Beverly J; Brown, Genevieve; Lara-Alecio, Rafael; Jackson, Shirley, eds. (2013). The Handbook of Educational Theories. ISBN 978-1-61735-867-8.[page needed]
  26. ^ Pun, Min (23 May 2014). "The Use of Multimedia Technology in English Language Teaching: A Global Perspective". Crossing the Border: International Journal of Interdisciplinary Studies. 1 (1): 29–38. doi:10.3126/ctbijis.v1i1.10466.
  27. ^ Izquierdo, Jesús; Simard, Daphnée; Pulido, María Guadalupe Garza (30 April 2015). "Multimedia Instruction & Language Learning Attitudes: A Study with University Students". Revista Electrónica de Investigación Educativa. 17 (2).
  28. ^ Pincus, Hanna; Wojcieszak, Magdalena; Boomgarden, Hajo (September 2017). "Do Multimedia Matter? Cognitive and Affective Effects of Embedded Multimedia Journalism". Journalism & Mass Communication Quarterly. 94 (3): 747–771. doi:10.1177/1077699016654679. S2CID 148407202.
  29. ^ Chengbo, Wang; Hui, Xiao; Wen, Shiting (January 2019). "SPSE — a model of engineering multimedia learning and training". Multimedia Tools and Applications. 78 (1): 1149–1164. doi:10.1007/s11042-018-6520-5. S2CID 52058366.
  30. ^ "Manufacturing Cars with Virtual Reality". www.asme.org. Retrieved 2021-01-21.
  31. ^ Muttappallymyalil, Jayakumary; Mendis, Susirith; John, Lisha Jenny; Shanthakumari, Nisha; Sreedharan, Jayadevan; Shaikh, Rizwana B (3 October 2016). "Evolution of technology in teaching: Blackboard and beyond in Medical Education". Nepal Journal of Epidemiology. 6 (3): 588–592. doi:10.3126/nje.v6i3.15870. PMC 5082488. PMID 27822404.
  32. ^ Michalski, Andrzej; Stopa, Marcin; Miśkowiak, Bogdan (26 October 2016). "Use of Multimedia Technology in the Doctor-Patient Relationship for Obtaining Patient Informed Consent". Medical Science Monitor. 22: 3994–3999. doi:10.12659/MSM.894147. PMC 5085339. PMID 27780964.

External links

Read more information:

Questa voce o sezione sugli argomenti stati scomparsi e Sudafrica non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Mancanza quasi totale di fonti e note Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Unione Sudafricana Bandiera dal 1928 (dettagli) Stemma dal 1932 (dettagli) Motto: Ex Unitate Vires Unione Sudafricana - LocalizzazioneL'Unione Sudaf…

Kotak catur HOS Kotak catur adalah wadah untuk menyimpan buah catur.[1] Umumnya terbuat dari kayu atau dari berbagai macam bahan. Konfigurasi kotak internal dapat berupa slot individual untuk masing-masing buah catur, satu pembagi untuk memisahkan buah putih dan hitam atau tidak ada pembagi dengan buah catur dicampur bersama-sama. Kotak catur biasanya persegi panjang tetapi ada juga dalam berbagai bentuk, termasuk peti atau laci geser. Galeri Kotak catur HOS dengan pemisah Referensi ^ Ch…

Kinemacolor del 1911 ricreato a materiali originali. Il Kinemacolor fu il primo processo riuscito di film a colori, usato commercialmente dal 1908 al 1914. Fu inventato da George Albert Smith nel 1906.[1] Questi fu influenzato dal lavoro di William Norman Lascelles Davidson, e, in maniera più diretta, da Edward Raymond Turner.[2] Fu lanciato dalla Urban Trading Co. di Londra di Charles Urban nel 1908. Dal 1909 in poi, il processo fu conosciuto come Kinemacolor. Era un processo d…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Valentin Hauy (13 November 1745 – 19 Maret 1822), seorang pelopor dari Prancis di bidang pendidikan tunanetra, mengembangkan suatu sistem huruf-huruf yang menyembul. Melalui huruf-huruf itu ia mengajari siswa-siswa tunanetra untuk membaca …

Alfabet Kiril AwalJenis aksara Alfabet BahasaSlavia Gereja lama, Slavia Gereja, wujud lama dari banyak Bahasa SlaviaPeriodesekitar tahun 893 di Bulgaria[1]Arah penulisanVariesAksara terkaitSilsilahHieroglif Mesir[2]Abjad FenisiaAlfabet Yunani dengan pengaruh Alfabet Glagolitic)Alfabet Kiril AwalAksara kerabatAlfabet LatinAlfabet KoptikAlfabet ArmeniaISO 15924ISO 15924Cyrs, 221 , ​Sirilik (Gereja Slavonik Kuno)Pengkodean UnicodeRentang UnicodeU+0400–U+04FF Cyril…

 AG8  SP8  Stasiun LRT Plaza RakyatStasiun Angkutan cepat Rute Sentul Timur-Ampang dan Rute Sentul Timur-Sri PetalingLantai peron stasiun Plaza Rakyat.Koordinat3°8′40″N 101°42′5″E / 3.14444°N 101.70139°E / 3.14444; 101.70139PemilikSyarikat Prasarana Negara (2002 – kini); diurus oleh RapidKL.JalurRute Sentul Timur-Ampang dan Rute Sentul Timur-Sri Petaling (1996 – kini)Jumlah peron2 peron sisiJumlah jalur2SejarahDibuka16 Desember 1996Oper…

Toyota AygoInformasiProdusenToyota Peugeot Citroën Automobile CzechMasa produksi2005-2022PerakitanKolin, Republik CekoBodi & rangkaKelasCity carMobil terkaitPeugeot 107Citroën C1Kia PicantoPenyalur dayaMesin1.0 L 1KR-FE I31.4 L DV4 HDi Mesin diesel I4DimensiJarak sumbu roda2.340 mm (92,1 in)Panjang3.405 mm (134,1 in)Lebar1.615 mm (63,6 in)Tinggi1.465 mm (57,7 in)Berat kosong890 kg (1.962 pon) Toyota Aygo merupakan salah satu produk mob…

Sebuah perahu pedal di Danau Genewa Perahu pedal di Brasil (disebut pedalinhos) Perahu pedal adalah sebuah kendaraan bertenaga manusia. Perahu pedal, yang biasanya dipakai di perairan tenang, sering kali digunakan di kolam-kolam dan danau-danau kecil di taman-taman kota. Catatan terawal tentang perahu pedal berasal dari diagram kapal buatan Leonardo da Vinci yang digerakkan menggunakan dua pedal.[1][2] Referensi ^ Dumpleton, Bernard (2002). Story of the Paddle Steamer. Intellect …

PT Holiawisata IndahNama dagangAladinTravelSebelumnya:MNC Travel (2011-2021)JenisPublikIndustriTravel dan PariwisataDidirikan14 Agustus 2011KantorpusatJakarta, IndonesiaCabang4 Kantor CabangTokohkunciVeranika Gunawan (CEO)ProdukTravelPemilikMNC e-Commerce (2011-2021)MNC Aladin Indonesia (2021-sekarang)Situs webwww.mnctravel.co.id PT Holiawisata Indah atau AladinTravel adalah salah satu perusahaan terbatas dengan kegiatan usaha meliputi jasa pelayanan dalam bidang pariwisata, pengurusan dokumen p…

Kévin Olimpa Informasi pribadiNama lengkap Kévin OlimpaTanggal lahir 10 Maret 1988 (umur 35)Tempat lahir Paris, PrancisTinggi 1,86 m (6 ft 1 in)Posisi bermain Penjaga gawangInformasi klubKlub saat ini BordeauxNomor 30Karier junior–2003 CSF Brétigny2003–2005 INF Clairefontaine2005–2006 BordeauxKarier senior*Tahun Tim Tampil (Gol)2006– Bordeaux 4 (0)2009–2010 Angers SCO (pinjaman) 19 (0)Tim nasional2009– Prancis U-21 6 (0) * Penampilan dan gol di klub senior hany…

Halaman ini berisi daftar kepala negara dari Haiti sejak awal Revolusi Haiti pada tahun 1791. Kemerdekaan penuh Haiti dideklarasikan pada tahun 1804. Antara 1806 dan 1820, Haiti terbagi antara utara Negara , kemudian Kerajaan Haiti, dan Republik Haiti di selatan. Daftar kepala negara Haiti (1791-Sekarang) # Potret Nama Mulai Menjabat Akhir Jabatan Gelar Toussaint Louverture 1 Januari 1791 7 April 1803 Pemimpin Revolusi Haiti (1 Januari 1791 - 7 April 1803) Gubernur /> <br Haiti (1801–180…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. SDIT Ibnu SinaSekolah Dasar Islam Terpadu Ibnu SinaInformasiDidirikan2001JenisSwastaAkreditasiAkreditasi ANomor Statistik Sekolah102016407094Nomor Pokok Sekolah Nasional20108871Jumlah siswa325 2013StatusAktifAlamatLokasiDuren Sawit, Jakarta Timur, DK…

Joetsu ShinkansenE7 series TokiIkhtisarJenisShinkansenSistemKereta cepatStatusBeroperasiLokasiJepangTerminusOmiyaNiigataStasiun10OperasiDibuka15 November 1982PemilikJR EastOperatorJR EastDepoNiigataRangkaianE2/E4 seriesData teknisPanjang lintas269,5 kmLebar sepur1.435 mmElektrifikasi25 kV AC, 50 Hz, overheadKecepatan operasi245 km/jam Peta rute Joetsu Shinkansen adalah jalur kereta cepat Shinkansen yang menghubungkan Tokyo dengan Niigata via Tohoku Shinkansen. Joetsu Shinkansen dioperasikan oleh…

Annual world international cycling competition See also: UCI Mountain Bike World Cup UCI Mountain Bike World ChampionshipsMoments before the start of the under-23 men's cross-country race at the 2009 World Championships in Canberra, Australia. Eventual winner Burry Stander is second from left.StatusactiveGenresports eventDate(s)varyingFrequencyannualInaugurated1990 (1990)Organised byUCI The UCI Mountain Bike World Championships are the world championship events for mountain bike racing in t…

Ostrobothnia Tengah Keski-Pohjanmaacode: fi is deprecated   (Finlandia)Mellersta Österbottencode: sv is deprecated   (Swedia)RegionRegion Ostrobothnia TengahKeski-Pohjanmaan maakuntaLandskapet Mellersta Österbotten BenderaLambang kebesaranOstrobothnia Tengah di peta FinlandiaKoordinat: 63°30′N 24°15′E / 63.500°N 24.250°E / 63.500; 24.250Koordinat: 63°30′N 24°15′E / 63.500°N 24.250°E / 63.500; 24.250NegaraFinlan…

Plakat peringatan di Kiefholzstraße 100, Berlin-Plänterwald mengenang Christian-Peter Friese, bersama dengan Wolfgang Glöde dan Jörg Hartmann Christian-Peter Friese (5 Agustus 1948 – 25 Desember 1970) adalah salah satu korban di Tembok Berlin. Para anggota Pasukan Perbatasan Republik Demokrat Jerman menembaknya saat berniat lari dari Jerman Timur. Biografi Ia adalah anak tunggal dari ibunya, dan dibesarkan olehnya di Naumburg. Ayahnya tidak diketahui. Setelah sekolah, ia dila…

This is a list of pansexual characters in fiction, i.e. characters that identify as pansexual or are identified by outside parties to be pansexual. Pansexuality is the sexual, romantic or emotional attraction towards people regardless of their biological sex or gender identity.[1][2] While pansexuality is at times viewed as a sexual orientation in its own right, at other times it's viewed as a branch of bisexuality, to indicate an alternative sexual identity.[2][3]…

Road in Malaysia Federal Route 3Wakaf Bharu-Kota Bharu-Kubang Kerian Highway(WKK Highway)Route informationPart of AH18 Existed2008–presentHistoryCompleted in 2012Major junctionsNorthwest endWakaf Bharu (East)Pasir PekanMajor intersections FT 134 Jalan Pengkalan Kubur FT 8 Federal Route 8 FT 57 Jalan Long Yunus FT 209 Jalan Pasir Hor FT 131 Jalan Raja Perempuan Zainab II FT 211 Jalan Kubang Kerian-BachokSoutheast endKubang Kerian LocationCountryMalaysiaPrimarydestinationsKota Bharu Hi…

SKYYJenisVodkaProdusenCampari GroupNegara asalAmerika SerikatDiperkenalkan1992Bukti80Produk terkaitDaftar vodka SKYY vodka SKYY vodka adalah minuman beralkohol vodka Amerika yang diproduksi oleh divisi Campari America dari Campari Group di Milan, Italia, yang sebelumnya bernama SKYY Spirits LLC.[1] SKYY Vodka mengandung 40% ABV atau 80% kadar alkohol, kecuali di Australia dan Selandia Baru yang memiliki kadar 37,5% ABV / 75 Proof dan di Afrika Selatan yang memiliki kadar 43% ABV / 86 Pro…

Napomyza gymnostoma Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Diptera Famili: Agromyzidae Genus: Napomyza Spesies: Napomyza gymnostoma Napomyza gymnostoma adalah spesies lalat yang berasal dari genus Napomyza dan famili Agromyzidae. Lalat ini juga merupakan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva Larva lalat ini herbivora dan biasanya memakan daun. Referensi Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglin…

Kembali kehalaman sebelumnya