Share to: share facebook share twitter share wa share telegram print page

Nilpotent matrix

In linear algebra, a nilpotent matrix is a square matrix N such that

for some positive integer . The smallest such is called the index of ,[1] sometimes the degree of .

More generally, a nilpotent transformation is a linear transformation of a vector space such that for some positive integer (and thus, for all ).[2][3][4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.

Examples

Example 1

The matrix

is nilpotent with index 2, since .

Example 2

More generally, any -dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index [citation needed]. For example, the matrix

is nilpotent, with

The index of is therefore 4.

Example 3

Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,

although the matrix has no zero entries.

Example 4

Additionally, any matrices of the form

such as

or

square to zero.

Example 5

Perhaps some of the most striking examples of nilpotent matrices are square matrices of the form:

The first few of which are:

These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[5]

Example 6

Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.

Characterization

For an square matrix with real (or complex) entries, the following are equivalent:

  • is nilpotent.
  • The characteristic polynomial for is .
  • The minimal polynomial for is for some positive integer .
  • The only complex eigenvalue for is 0.

The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)

This theorem has several consequences, including:

  • The index of an nilpotent matrix is always less than or equal to . For example, every nilpotent matrix squares to zero.
  • The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible.
  • The only nilpotent diagonalizable matrix is the zero matrix.

See also: Jordan–Chevalley decomposition#Nilpotency criterion.

Classification

Consider the (upper) shift matrix:

This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:

[6]

This matrix is nilpotent with degree , and is the canonical nilpotent matrix.

Specifically, if is any nilpotent matrix, then is similar to a block diagonal matrix of the form

where each of the blocks is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.[7]

For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix

That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1b2 such that Nb1 = 0 and Nb2 = b1.

This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

Flag of subspaces

A nilpotent transformation on naturally determines a flag of subspaces

and a signature

The signature characterizes up to an invertible linear transformation. Furthermore, it satisfies the inequalities

Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.

Additional properties

  • If is nilpotent of index , then and are invertible, where is the identity matrix. The inverses are given by
  • If is nilpotent, then

    Conversely, if is a matrix and

    for all values of , then is nilpotent. In fact, since is a polynomial of degree , it suffices to have this hold for distinct values of .
  • Every singular matrix can be written as a product of nilpotent matrices.[8]
  • A nilpotent matrix is a special case of a convergent matrix.

Generalizations

A linear operator is locally nilpotent if for every vector , there exists a such that

For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.

Notes

  1. ^ Herstein (1975, p. 294)
  2. ^ Beauregard & Fraleigh (1973, p. 312)
  3. ^ Herstein (1975, p. 268)
  4. ^ Nering (1970, p. 274)
  5. ^ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF). idmercer.com. self-published; personal credentials: PhD Mathematics, Simon Fraser University. Retrieved 5 April 2023.
  6. ^ Beauregard & Fraleigh (1973, p. 312)
  7. ^ Beauregard & Fraleigh (1973, pp. 312, 313)
  8. ^ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3

References

Read other articles:

Renault KwidInformasiProdusenRenaultMasa produksi2012–sekarangPerakitanChennai, India (Renault India)Bodi & rangkaKelasEntry-level CrossoverBentuk kerangka5-door hatchbackPlatformRenault CMF platform (CMF-A)Penyalur dayaMesin0.8 L I3 (bensin)1.0 L I3 (bensin)Transmisi5-speed manual5-speed manual otomatis (Easy-R)DimensiJarak sumbu roda2.422 mm (95,4 in)Panjang3.679 mm (144,8 in)Lebar1.579 mm (62,2 in)Tinggi1.478 mm (58,2 in) Renault Kwid adalah …

Kementerian Keuangan FederalBundesministerium der Finanzen (BMF)Informasi lembagaDibentuk14 Juli 1879 (Reichsschatzamt)Wilayah hukumKabinet JermanKantor pusatDetlev-Rohwedder-HausWilhelmstraße 97, 10117 BerlinPegawai1900MenteriChristian Lindner, Menteri Keuangan FederalPejabat eksekutifSteffen Kampeter, Sekretaris Parlemen NegaraHartmut Koschyk, Sekretaris Parlemen NegaraBernard Beus, Sekretaris NegaraWerner Gatzer, Sekretaris NegaraThomas Steffen, Sekretaris NegaraSitus webhttp://www.bundesfin…

HumboldtKota HumboldtJulukan: 'Boldt, The 'Boldt, CrumboldtCountryCanadaProvinceSaskatchewanEstablished1875Incorporated (town)April 1, 1907Incorporated (city)November 7, 2000Pemerintahan • MayorMalcolm Eaton, (2009) • Humboldt City CouncilAaron Behiel, Leon Fleischhacker, Gord Lees, Rob Muench, Phillip Smith, Leon Winkel[1] • MLA, HumboldtDonna Harpauer (SKP), (2011) • MP, Saskatoon—HumboldtBrad Trost (CPC), (2011)Luas • …

Çaka BeyRepresentasi modern Çaka Bey di Museum Angkatan Laut IstanbulMeninggal1093KebangsaanOghuz Tzachas (bahasa Yunani: Τζαχᾶς), juga dikenal sebagai Çaka Bey (Turkish: Çaka Beycode: tr is deprecated )[dn 1] adalah seorang komandan militer Seljuk Turki abad ke-11 yang memerintah sebuah negara merdeka di Smyrna (sekarang Izmir). Pada awalnya, ia berdinas di militer Bizantium, sebelum dirinya memberontak dan menduduki Smyrna, sebagian besar tanah pesisir Aegea dari Asia Ke…

American professional wrestler This article is about the American professional wrestler. For other people, see Robert Fish. Bobby FishFish in 2016Birth nameRobert Anthony Fish[1]Born (1976-10-27) October 27, 1976 (age 47)[2]Albany, New York, U.S.Children2Professional wrestling careerRing name(s)Bobby Fish[3]Madden Fisher[4]Jerk Jackson[4]Billed height5 ft 11 in (180 cm)[4]Billed weight197 lb (89 kg)[3]Billed fr…

Town in Lika-Senj, CroatiaGospićTownGrad Gospić Town of GospićView of Gospić FlagGospićLocation of Gospić within CroatiaCoordinates: 44°32′46″N 15°22′30″E / 44.546°N 15.375°E / 44.546; 15.375Country CroatiaCounty Lika-SenjGovernment • MayorKarlo Starčević (HSP)Area[1] • Town967.4 km2 (373.5 sq mi) • Urban21.4 km2 (8.3 sq mi)Elevation656 m (2,152 ft)Population …

1830 1834 Élections législatives françaises de 1831 459 députés 5 juillet 1831 Type d’élection Élections législatives Corps électoral et résultats Inscrits 166 583 Votants 125 090   75,09 % Doctrinaires – Casimir Périer Parti de la Résistance DoctrinairesCentre ministérielCentre gauche Voix 76 805 61,44 %   12,2 Députés élus 282  8 Légitimistes – Pierre-Antoine Berryer Voix 28 270 22,66 %&…

Undeveloped territory of the United States, c. 1607–1912 Wild West redirects here. For other uses, see Wild West (disambiguation). Western Frontier redirects here. For the film, see Western Frontier (film). American frontierThe cowboy, the quintessential symbol of the American frontier. Photo by John C. H. Grabill, c. 1887.Date 1607–1912 territorial expansion (first colony established at Jamestown in 1607 to the admission of Arizona Territory as a state in 1912) 1860s–1912 (stereotyp…

Drug used in scientific research IsamoltaneClinical dataATC codenoneIdentifiers IUPAC name 1-(propan-2-ylamino)-3-(2-pyrrol-1-ylphenoxy)propan-2-ol CAS Number99740-06-4PubChem CID127403ChemSpider113051UNII214SP5P1EXCompTox Dashboard (EPA)DTXSID00912513 Chemical and physical dataFormulaC16H22N2O2Molar mass274.364 g·mol−13D model (JSmol)Interactive image SMILES OC(CNC(C)C)COc1ccccc1n2cccc2 Isamoltane (CGP-361A) is a drug used in scientific research. It acts as an antagonist at the β-adren…

Chronologie de la France ◄◄ 1547 1548 1549 1550 1551 1552 1553 1554 1555 ►► Chronologies Données clés 1548 1549 1550  1551  1552 1553 1554Décennies :1520 1530 1540  1550  1560 1570 1580Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature et Musique classique   Ingénierie (), Architecture et ()…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Sadeq Mallallah – news · newspapers · books · scholar · JSTOR (December 2022) Sadeq Abdul Kareem Malallah (Arabic: صادق عبد کریم مال‌الله; born in Qateef in 1970; died September 2, 1992) was a Shiite Saudi Arabian who was beheaded in …

Lukas 1Permulaan Injil Lukas (pasal 1:1-7a), folio 102 pada Minuscule 481, yang dibuat sekitar abad ke-10.KitabInjil LukasKategoriInjilBagian Alkitab KristenPerjanjian BaruUrutan dalamKitab Kristen3← Markus 16 pasal 2 → Lukas 1 (disingkat Luk 1) adalah pasal pertama dari Injil Lukas pada Perjanjian Baru dalam Alkitab Kristen. Disusun oleh Lukas, seorang Kristen yang merupakan teman seperjalanan Rasul Paulus.[1][2] Pasal yang terdiri dari 80 ayat ini merupakan salah sa…

Sungai BrantasKali BrantasSebuah jembatan gantung di atas sungai Brantas dekat Kesamben (1922).LokasiNegara IndonesiaProvinsiJawa TimurKabupaten/KotaKota BatuKota MalangKabupaten MalangKabupaten BlitarKabupaten TulungagungKabupaten KediriKota KediriKabupaten JombangKabupaten NganjukKabupaten MojokertoKabupaten GresikKabupaten SidoarjoKabupaten PasuruanKota SurabayaCiri-ciri fisikHulu sungaiGunung Anjasmoro - lokasiDesa Sumber Brantas, Kecamatan Bumiaji, Kota Batu - eleva…

1976 film by Chuck Jones Bugs and Daffy's Carnival of the AnimalsVHS coverWritten byChuck JonesOgden NashDirected byChuck JonesStarringMel BlancMichael Tilson ThomasMusic byCamille Saint-SaënsCountry of originUnited StatesProductionProducerChuck JonesRunning time23 minutesProduction companyChuck Jones EnterprisesOriginal releaseNetworkCBSReleaseNovember 22, 1976 (1976-11-22) Bugs and Daffy's Carnival of the Animals (originally aired on TV as Carnival of the Animals) is a 1976 liv…

American politician (born 1956)This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Betsy Markey – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this message)Betsy MarkeyU.S. Assistant Secretary of Homeland Security for Intergovernmental AffairsIn office2011–2013PresidentBa…

Geographical features of Bahrain This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Geography of Bahrain – news · newspapers · books · scholar · JSTOR (October 2020) (Learn how and when to remove this message) Map of Bahrain Topography Persian Gulf Enlargeable, detailed map of Bahrain, with most features marked in…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总理…

Sicone IPangeran BeneventoBerkuasa817-832PendahuluGrimoaldo IVPenerusSicardo IKelahiransekitar tahun 758Kematian832 Sicone (sekitar tahun 758 – 832)[1] merupakan seorang Pangeran Benevento dari tahun 817 sampai kematiannya. Kehidupan Sekeping solidus yang berisi gambar Sicone di depan dan Mikhael di belakang Sebelum menjadi Pangeran Benevento, ia adalah gastald Acerenza. Setelah pembunuhan Grimoaldo IV, Sicone naik ke atas tahta kepangeranan. Ia membuat janji palsu yang sama atas upeti…

هيلين كوين (بالإنجليزية: Helen Rho)‏    معلومات شخصية الميلاد 19 مايو 1943 (81 سنة)[1]  ملبورن[2][3][4]  مواطنة الولايات المتحدة[5][6][7] أستراليا  عضوة في الأكاديمية الوطنية للعلوم[8]،  والأكاديمية الأمريكية للفنون والعلوم،  والجمعية الأمر…

Kembali kehalaman sebelumnya