Share to: share facebook share twitter share wa share telegram print page

Order-4 octagonal tiling

Order-4 octagonal tiling
Order-4 octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 84
Schläfli symbol {8,4}
r{8,8}
Wythoff symbol 4 | 8 2
Coxeter diagram
or
Symmetry group [8,4], (*842)
[8,8], (*882)
Dual Order-8 square tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-4 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,4}. Its checkerboard coloring can be called a octaoctagonal tiling, and Schläfli symbol of r{8,8}.

Uniform constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,8] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,8,1+], gives [(8,8,4)], (*884) symmetry. Removing two mirrors as [8,4*], leaves remaining mirrors *4444 symmetry.

Four uniform constructions of 8.8.8.8
Uniform
Coloring
Symmetry [8,4]
(*842)
[8,8]
(*882)
=
[(8,4,8)] = [8,8,1+]
(*884)
=

=

[1+,8,8,1+]
(*4444)
=
Symbol {8,4} r{8,8} r(8,4,8) = r{8,8}12 r{8,4}18 = r{8,8}14
Coxeter
diagram
=

=

= =
=

Symmetry

This tiling represents a hyperbolic kaleidoscope of 8 mirrors meeting as edges of a regular hexagon. This symmetry by orbifold notation is called (*22222222) or (*28) with 8 order-2 mirror intersections. In Coxeter notation can be represented as [8*,4], removing two of three mirrors (passing through the octagon center) in the [8,4] symmetry. Adding a bisecting mirror through 2 vertices of an octagonal fundamental domain defines a trapezohedral *4422 symmetry. Adding 4 bisecting mirrors through the vertices defines *444 symmetry. Adding 4 bisecting mirrors through the edge defines *4222 symmetry. Adding all 8 bisectors leads to full *842 symmetry.


*444

*4222

*832

The kaleidoscopic domains can be seen as bicolored octagonal tiling, representing mirror images of the fundamental domain. This coloring represents the uniform tiling r{8,8}, a quasiregular tiling and it can be called a octaoctagonal tiling.

This tiling is topologically related as a part of sequence of regular tilings with octagonal faces, starting with the octagonal tiling, with Schläfli symbol {8,n}, and Coxeter diagram , progressing to infinity.

*n42 symmetry mutation of regular tilings: {n,4}
Spherical Euclidean Hyperbolic tilings
24 34 44 54 64 74 84 ...4
Regular tilings: {n,8}
Spherical Hyperbolic tilings

{2,8}

{3,8}

{4,8}

{5,8}

{6,8}

{7,8}

{8,8}
...
{∞,8}

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.


{3,4}

{4,4}

{5,4}

{6,4}

{7,4}

{8,4}
...
{∞,4}
Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries)
(And [(∞,4,∞,4)] (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=



=
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
V84 V4.16.16 V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)

=

=

=

=

=

=
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
V(4.4)4 V3.(3.8)2 V(4.4.4)2 V(3.4)3 V88 V4.44 V3.3.4.3.8
Uniform octaoctagonal tilings
Symmetry: [8,8], (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8 V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
= = = =
=
=
=
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} hrr{8,8} sr{8,8}
Alternation duals
V(4.8)8 V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8 V(4.8)8 V46 V3.3.8.3.8

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

Read other articles:

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Bioskop Film Dewasa dan Game Nob Hill yang terletak di San Francisco Bioskop Film Dewasa adalah Bioskop di mana Film porno dipertujunkkan kepada penonton dewasa. Biasanya ada pert…

Questa voce sugli argomenti Mauritania e storia contemporanea è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Proteste in Mauritania del 2011-2012parte della Primavera arabagiovani manifestanti a Nouakchott il 25 aprile 2011.Data25 febbraio 2011 - 2012 LuogoMauritania Causa desiderio di cambiamenti economici e politici Schieramenti Gruppi di opposizione mauritani Movimento del 25 febbraio UNEM Movimento no…

KasinKelurahanNegara IndonesiaProvinsiJawa TimurKotaMalangKecamatanKlojenKodepos65117Kode Kemendagri35.73.02.1006 Kode BPS3573030001 Luas132.200 m²Jumlah penduduk15.780 jiwaKepadatan... jiwa/km² Sebuah pos polisi di Kasin pada tahun 1930-an. Untuk desa di Iran, lihat Kasin. Kasin adalah sebuah kelurahan di wilayah Kecamatan Klojen, Kota Malang, Provinsi Jawa Timur. Batas Wilayah Administrasi[1] Wilayah Kelurahan Kasin, Kecamatan Klojen dikelilingi oleh Kelurahan - Kelurahan di Kot…

Sikorsky S-38 adalah pesawat bermesin ganda amfibi 8 kursi Amerika. Itu kadang-kadang disebut The Explorer Air Yacht dan perahu terbang amfibi Sikorsky pertama yang diproduksi secara luas. Selain berhasil melayani untuk Pan American Airways dan Angkatan Darat AS, juga dimiliki banyak pemilik swasta yang menerima ketenaran untuk eksploitasi mereka. Referensi Davies, R.E.G. (1987). Pan Am: An Airline and its Aircraft. New York, NY USA: Orion Books. ISBN 0-517-56639-7.  Yenne, Bill (2003)…

Politeknik Negeri FakfakMotoKreatif, Inovatif, DisipilinJenisPerguruan Tinggi Negeri, PoliteknikDidirikan30 Oktober 2012DirekturMuh. Subhan, S.ST., M.T.AlamatJalan Imam Bonjol Atas, Air-Merah Wagom, Fakfak, Papua Barat, IndonesiaSitus webhttps://www.polinef.ac.id/ Politeknik Negeri Fakfak disingkat Polinef adalah salah satu perguruan tinggi yang berada di Fakfak, Provinsi Papua Barat. Sejarah Politeknik Negeri Fakfak (POLINEF) berdiri berdasarkan launching yang dilaksanakan di Gedung Winder Tuar…

Comtesse Julia von HaukePutri BattenbergJulia Hauke (Vladimir Hau)Kelahiran(1825-11-24)24 November 1825Warsawa, Ketsaran PolandiaKematian19 September 1895(1895-09-19) (umur 69)Kastil Heiligenberg, Jugenheim, HessenNama lengkapJulie Therese Salomea HaukeAyahComte Johann Maurice HaukeIbuSophie LafontainePasanganPangeran Aleksander dari Hessen dan RheinAnakMarie, Putri Erbach-SchönbergLouis Mountbatten, Markis Pertama Milford HavenAleksander, Pangeran BulgariaPangeran HenryPangeran Franz Jose…

113e congrès des États-Unis Le Capitole des États-Unis, où se réunit le Congrès, en septembre 2013. 3 janvier 2013 – 3 janvier 2015 Sénat Président Joe Biden Président pro tempore Patrick Leahy Membres 100 sénateurs Majorité Parti démocrate Chambre des représentants Président John Boehner Membres 435 représentants6 membres sans vote Majorité Parti républicain Sessions 1re : 3 janvier 2013 – 26 décembre 20132e : 3 janvier 2014 – 16 décembre 2014 Précédent Suiv…

Leipzig Leipsic[1],[2] De gauche à droite et de haut en bas : le centre-ville vu depuis Fockeberg, le monument de la Bataille des Nations de nuit, le tribunal administratif fédéral, l'ancien hôtel de ville sur la place du marché, la gewandhaus sur l'augustusplatz avec la city-hochhaus en arrière-plan et le gondwanaland au jardin zoologique. Armoiries Drapeau Administration Pays Allemagne Land Saxe District(Regierungsbezirk) Leipzig Arrondissement(Landkreis) Leipzig (ville-arrondisseme…

Tegalsari Mandala IIKelurahanKantor Kelurahan Tegalsari Mandala IINegara IndonesiaProvinsiSumatera UtaraKotaMedanKecamatanMedan DenaiKode Kemendagri12.71.04.1002 Kode BPS1275040005 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Tegalsari Mandala II adalah kelurahan di kecamatan Medan Deli, Medan, Sumatera Utara, Indonesia. Galeri Gereja GBKP Perumnas Mandala di Kelurahan Tegalsari Mandala II Gereja GKPI Jemaat Khusus Perumnas II Mandala di Kelurahan Tegalsari Mandala II Gereja GK…

Mignovillard La mairie de Mignovillard sous la neige. Blason Administration Pays France Région Bourgogne-Franche-Comté Département Jura Arrondissement Lons-le-Saunier Intercommunalité Communauté de communes Champagnole Nozeroy Jura Maire Mandat Florent Serrette 2020-2026 Code postal 39250 Code commune 39331 Démographie Gentilé Mignovillageois Populationmunicipale 864 hab. (2021) Densité 16 hab./km2 Géographie Coordonnées 46° 47′ 30″ nord, 6° 07′…

Attributed 20th-century psychic healer, proponent of universal consciousness Edgar CayceCayce c. 1910Born(1877-03-18)March 18, 1877Christian County, KentuckyDiedJanuary 3, 1945(1945-01-03) (aged 67)Virginia Beach, VirginiaResting placeRiverside Cemetery, Hopkinsville, KentuckyNationalityAmericanOccupations Clairvoyant Photographer Sunday school teacher Homeopath Known forFounder of Association for Research and EnlightenmentSpouse Gertrude Evans ​(m. 1903⁠̵…

Protein-coding gene in the species Homo sapiens SURF1IdentifiersAliasesSURF1, CMT4K, surfeit 1, cytochrome c oxidase assembly factor, SURF1 cytochrome c oxidase assembly factor, MC4DN1, SHY1External IDsOMIM: 185620 MGI: 98443 HomoloGene: 2387 GeneCards: SURF1 Gene location (Human)Chr.Chromosome 9 (human)[1]Band9q34.2Start133,351,758 bp[1]End133,356,676 bp[1]Gene location (Mouse)Chr.Chromosome 2 (mouse)[2]Band2 A3|2 19.1 cMStart26,803,393 bp[2]End26,80…

Voce principale: Piacenza Calcio 1919. Piacenza Football ClubStagione 1967-1968Sport calcio Squadra Piacenza Allenatore Sandro Puppo (1ª-5ª) Leo Zavatti (6ª-38ª) Presidente Vincenzo Romagnoli Serie C2º posto nel girone A. Maggiori presenzeCampionato: Ferretti, Favari (38) Miglior marcatoreCampionato: Favari (11) StadioBarriera Genova 1966-1967 1968-1969 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Piacenza Football Club nelle competizioni …

Serbian volleyball player Nemanja PetrićPersonal informationNationalitySerbianBorn (1987-07-28) 28 July 1987 (age 36)Prijepolje, SR Serbia, SFR YugoslaviaHeight2.02 m (6 ft 8 in)Weight86 kg (190 lb)Spike333 cm (131 in)Block320 cm (126 in)Volleyball informationPositionOutside hitterCurrent clubSpor TotoNumber4Career YearsTeams 2007–2010 2010–2011 2011–2014 2014–2017 2017–2018 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023 2…

Bridge in Tiền Giang & Bến Tre, VietnamRạch Miễu BridgeCầu Rạch MiễuRạch Miễu Bridge in 2011Coordinates10°20′13″N 106°20′38″E / 10.337°N 106.344°E / 10.337; 106.344Carries2 lanes (1 each way)CrossesMekong riverLocaleTiền Giang & Bến Tre,  VietnamMaintained byTổng công ty Tư vấn thiết kế GTVT (TEDI)CharacteristicsDesignCable-stayed bridgeTotal length2,868 metres (9,409 ft), 8,331 meters (27,333 ft) include …

Ricardo Oliveira Informasi pribadiNama lengkap Ricardo de OliveiraTanggal lahir 6 Mei 1980 (umur 44)Tempat lahir São Paulo, BrasilTinggi 183 m (600 ft 4+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini SantosNomor 9Karier junior1997–1999 Corinthians1999–2000 PortuguesaKarier senior*Tahun Tim Tampil (Gol)2000–2002 Portuguesa 48 (23)2003 Santos 14 (4)2003–2004 Valencia 21 (8)2004–2006 Betis 46 (26)2006 → São Paulo (loan) 8 (5)2006–2008 Milan 26 (…

You can help expand this article with text translated from the corresponding article in Spanish. (June 2015) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there are alrea…

In-N-Out Burgers, Inc.In-N-Out headquarters atUniversity Tower in IrvineJenisSwastaIndustriRumah makan siap sajiDidirikan22 Oktober 1948; 75 tahun lalu (1948-10-22)Baldwin Park, California, U.S.PendiriEsther Snyder Harry SnyderKantorpusatIrvine, California, Amerika SerikatCabang358[1]Wilayah operasiArizonaCaliforniaColoradoIdaho[2] (diumumkan)NevadaOregonTexasUtahTokohkunciLynsi Snyder, PresidentMark Taylor, COORoger Kotch, CFOPendapatanUS$575 juta (perkiraan 2017)[…

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة م…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Kembali kehalaman sebelumnya