Share to: share facebook share twitter share wa share telegram print page

Pair-instability supernova

When a star is very massive, the gamma rays produced in its core can become so energetic that some of their energy is drained away into production of particle and antiparticle pairs. The resulting drop in radiation pressure causes the star to partially collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions (not shown here) ensue and the star explodes.

A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse.[1] This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.[2]

Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses and low to moderate metallicity (low abundance of elements other than hydrogen and helium – a situation common in Population III stars).

Physics

Photon emission

Photons given off by a body in thermal equilibrium have a black-body spectrum with an energy density proportional to the fourth power of the temperature, as described by the Stefan–Boltzmann law. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the frequency, and the energy, of the peak emission is directly proportional to the temperature.

Photon pressure in stars

In very massive, hot stars with interior temperatures above about 300000000 K (3×108 K), photons produced in the stellar core are primarily in the form of very high-energy gamma rays. The pressure from these gamma rays fleeing outward from the core helps to hold up the upper layers of the star against the inward pull of gravity. If the level of gamma rays (the energy density) is reduced, then the outer layers of the star will begin to collapse inwards.

Gamma rays with sufficiently high energy can interact with nuclei, electrons, or one another. One of those interactions is to form pairs of particles, such as electron-positron pairs, and these pairs can also meet and annihilate each other to create gamma rays again, all in accordance with Albert Einstein's mass-energy equivalence equation E = m c² .

At the very high density of a large stellar core, pair production and annihilation occur rapidly. Gamma rays, electrons, and positrons are overall held in thermal equilibrium, ensuring the star's core remains stable. By random fluctuation, the sudden heating and compression of the core can generate gamma rays energetic enough to be converted into an avalanche of electron-positron pairs. This reduces the pressure. When the collapse stops, the positrons find electrons and the pressure from gamma rays is driven up, again. The population of positrons provides a brief reservoir of new gamma rays as the expanding supernova's core pressure drops.

Pair-instability

As temperatures and gamma ray energies increase, more and more gamma ray energy is absorbed in creating electron–positron pairs. This reduction in gamma ray energy density reduces the radiation pressure that resists gravitational collapse and supports the outer layers of the star. The star contracts, compressing and heating the core, thereby increasing the rate of energy production. This increases the energy of the gamma rays that are produced, making them more likely to interact, and so increases the rate at which energy is absorbed in further pair production. As a result, the stellar core loses its support in a runaway process, in which gamma rays are created at an increasing rate; but more and more of the gamma rays are absorbed to produce electron–positron pairs, and the annihilation of the electron–positron pairs is insufficient to halt further contraction of the core. Finally, the thermal runaway ignites detonation fusion of oxygen and heavier elements. When the temperature reaches the level when electrons and positrons carry the same energy fraction as gamma-rays, pair production cannot increase any further, it is balanced by annihilation. Contraction no longer accelerates, but the core now produces much more energy than prior to collapse, and this results in a supernova: the outer layers of the star are blown away by sudden large increase of power production in the core. Calculations suggest that so much of the outer layers are lost that the very hot core itself is no longer under sufficient pressure to keep it intact, and it is completely disrupted too.

Stellar susceptibility

For a star to undergo pair-instability supernova, the increased creation of positron/electron pairs by gamma ray collisions must reduce outward pressure enough for inward gravitational pressure to overwhelm it. High rotational speed and/or metallicity can prevent this. Stars with these characteristics still contract as their outward pressure drops, but unlike their slower or less metal-rich cousins, these stars continue to exert enough outward pressure to prevent gravitational collapse.

Stars formed by collision mergers having a metallicity Z between 0.02 and 0.001 may end their lives as pair-instability supernovae if their mass is in the appropriate range.[3]

Very large high-metallicity stars are probably unstable due to the Eddington limit, and would tend to shed mass during the formation process.

Stellar behavior

Supernovae vs initial mass and metallicity

Several sources describe the stellar behavior for large stars in pair-instability conditions.[4][5]

Below 100 solar masses

Gamma rays produced by stars of fewer than 100 or so solar masses are not energetic enough to produce electron-positron pairs. Some of these stars will undergo supernovae of a different type at the end of their lives, but the causative mechanisms do not involve pair-instability.

100 to 130 solar masses

These stars are large enough to produce gamma rays with enough energy to create electron-positron pairs, but the resulting net reduction in counter-gravitational pressure is insufficient to cause the core-overpressure required for supernova. Instead, the contraction caused by pair-creation provokes increased thermonuclear activity within the star that repulses the inward pressure and returns the star to equilibrium. It is thought that stars of this size undergo a series of these pulses until they shed sufficient mass to drop below 100 solar masses, at which point they are no longer hot enough to support pair-creation. Pulsing of this nature may have been responsible for the variations in brightness experienced by Eta Carinae in 1843, though this explanation is not universally accepted.[citation needed]

130 to 250 solar masses

For very high-mass stars, with mass at least 130 and up to perhaps roughly 250 solar masses, a true pair-instability supernova can occur. In these stars, the first time that conditions support pair production instability, the situation runs out of control. The collapse proceeds to efficiently compress the star's core; the overpressure is sufficient to allow runaway nuclear fusion to burn it in several seconds, creating a thermonuclear explosion.[5] With more thermal energy released than the star's gravitational binding energy, it is completely disrupted; no black hole or other remnant is left behind. This is predicted to contribute to a "mass gap" in the mass distribution of stellar black holes.[6][7] (This "upper mass gap" is to be distinguished from a suspected "lower mass gap" in the range of a few solar masses.)

In addition to the immediate energy release, a large fraction of the star's core is transformed to nickel-56, a radioactive isotope which decays with a half-life of 6.1 days into cobalt-56. Cobalt-56 has a half-life of 77 days and then further decays to the stable isotope iron-56 (see Supernova nucleosynthesis). For the hypernova SN 2006gy, studies indicate that perhaps 40 solar masses of the original star were released as Ni-56, almost the entire mass of the star's core regions.[4] Collision between the exploding star core and gas it ejected earlier, and radioactive decay, release most of the visible light.

250 solar masses or more

A different reaction mechanism, photodisintegration, follows the initial pair-instability collapse in stars of at least 250 solar masses. This endothermic (energy-absorbing) reaction absorbs the excess energy from the earlier stages before the runaway fusion can cause a hypernova explosion; the star then collapses completely into a black hole.[5]

Appearance

Light curves compared to normal supernovae

Luminosity

Pair-instability supernovae are popularly thought to be highly luminous. This is only the case for the most massive progenitors since the luminosity depends strongly on the ejected mass of radioactive 56Ni. They can have peak luminosities of over 1037 W, brighter than type Ia supernovae, but at lower masses peak luminosities are less than 1035 W, comparable to or less than typical type II supernovae.[8]

Spectrum

The spectra of pair-instability supernovae depend on the nature of the progenitor star. Thus they can appear as type II or type Ib/c supernova spectra. Progenitors with a significant remaining hydrogen envelope will produce a type II supernova, those with no hydrogen but significant helium will produce a type Ib, and those with no hydrogen and virtually no helium will produce a type Ic.[8]

Light curves

In contrast to the spectra, the light curves are quite different from the common types of supernova. The light curves are highly extended, with peak luminosity occurring months after onset.[8] This is due to the extreme amounts of 56Ni expelled, and the optically dense ejecta, as the star is entirely disrupted.

Remnant

Remnants of single massive stars

Pair-instability supernovae completely destroy the progenitor star and do not leave behind a neutron star or black hole. The entire mass of the star is ejected, so a nebular remnant is produced and many solar masses of heavy elements are ejected into interstellar space.

Pair-instability supernovae candidates

Some supernovae candidates for classification as pair-instability supernovae include:

See also

References

  1. ^ Rakavy, G.; Shaviv, G. (June 1967). "Instabilities in Highly Evolved Stellar Models". The Astrophysical Journal. 148: 803. Bibcode:1967ApJ...148..803R. doi:10.1086/149204.
  2. ^ Fraley, Gary S. (1968). "Supernovae Explosions Induced by Pair-Production Instability" (PDF). Astrophysics and Space Science. 2 (1): 96–114. Bibcode:1968Ap&SS...2...96F. doi:10.1007/BF00651498. S2CID 122104256.
  3. ^ Belkus, H.; Van Bever, J.; Vanbeveren, D. (2007). "The Evolution of Very Massive Stars". The Astrophysical Journal. 659 (2): 1576–1581. arXiv:astro-ph/0701334. Bibcode:2007ApJ...659.1576B. doi:10.1086/512181. S2CID 16604353.
  4. ^ a b Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; et al. (2007). "SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae". The Astrophysical Journal. 666 (2): 1116–1128. arXiv:astro-ph/0612617. Bibcode:2007ApJ...666.1116S. doi:10.1086/519949. S2CID 14785067.
  5. ^ a b c Fryer, C.L.; Woosley, S. E.; Heger, A. (2001). "Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients". The Astrophysical Journal. 550 (1): 372–382. arXiv:astro-ph/0007176. Bibcode:2001ApJ...550..372F. doi:10.1086/319719. S2CID 7368009.
  6. ^ Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M. (2019-09-11). "Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo" (PDF). The Astrophysical Journal. 882 (2): L24. arXiv:1811.12940. Bibcode:2019ApJ...882L..24A. doi:10.3847/2041-8213/ab3800. hdl:1721.1/132410. ISSN 2041-8213. S2CID 119216482.
  7. ^ Farmer, R.; Renzo, M.; de Mink, S. E.; Marchant, P.; Justham, S. (2019). "Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap". The Astrophysical Journal. 887 (1): 53. arXiv:1910.12874. Bibcode:2019ApJ...887...53F. doi:10.3847/1538-4357/ab518b. ISSN 1538-4357. S2CID 204949567.
  8. ^ a b c Kasen, D.; Woosley, S. E.; Heger, A. (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal. 734 (2): 102. arXiv:1101.3336. Bibcode:2011ApJ...734..102K. doi:10.1088/0004-637X/734/2/102. S2CID 118508934.
  9. ^ Gal-Yam, A.; Mazzali, P.; Ofek, E. O.; et al. (3 December 2009), "Supernova 2007bi as a pair-instability explosion", Nature, 462 (7273): 624–627, arXiv:1001.1156, Bibcode:2009Natur.462..624G, doi:10.1038/nature08579, PMID 19956255, S2CID 4336232
  10. ^ Cooke, J.; Sullivan, M.; Gal-Yam, A.; Barton, E. J.; Carlberg, R. G.; Ryan-Weber, E. V.; Horst, C.; Omori, Y.; Díaz, C. G. (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–231. arXiv:1211.2003. Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID 23123848. S2CID 4397580.
  11. ^ Kozyreva, Alexandra; Kromer, Markus; Noebauer, Ulrich M; Hirschi, Raphael (21 September 2018). "OGLE14-073 – a promising pair-instability supernova candidate". Monthly Notices of the Royal Astronomical Society. 479 (3): 3106–3114. arXiv:1804.05791. doi:10.1093/mnras/sty983. ISSN 0035-8711. S2CID 119430876 – via OUP.
  12. ^ Gomez, Sebastian; Berger, Edo; Nicholl, Matt; Blanchard, Peter K.; Villar, V. Ashley; Patton, Locke; Chornock, Ryan; Leja, Joel; Hosseinzadeh, Griffin; Cowperthwaite, Philip S. (2019). "SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium". The Astrophysical Journal. 881 (2): 87. arXiv:1904.07259. Bibcode:2019ApJ...881...87G. doi:10.3847/1538-4357/ab2f92. S2CID 119314293.
  13. ^ Schulze, Steve; Fransson, Claes; Kozyreva, Alexandra; Cheng, Ting-Wan; Yaron, Ofer; Jerkstrand, Anders; Gal-Yam, Avishay; Sollerman, Jesper; Yan, Lin; Kangas, Tuomas (2023). "1100 days in the life of the supernova 2018ibb -- The best pair-instability supernova candidate, to date". Astronomy and Astrophysics. 683. arXiv:2305.05796. Bibcode:2024A&A...683A.223S. doi:10.1051/0004-6361/202346855.

Read other articles:

Nora AunorAunor in 2011LahirNora Cabaltera Villamayor21 Mei 1953 (umur 70)Iriga, Camarines Sur, FilipinaKebangsaanFilipinoNama lainAte GuyPekerjaanAktrisprodusersutradarapenyanyiTahun aktif1967–sekarangSuami/istriChristopher de Leon (1975–1980; bercerai 1996)Anak5 (1 anak kandung, 4 anak angkat termasuk Lotlot de Leon and Matet de Leon)Situs webtheartistryofnoraaunor.com Nora Aunor (lahir Nora Cabaltera Villamayor ; 21 Mei 1953) [1] adalah seorang aktris, penyanyi…

Eugen Schiffer Menteri KeuanganMasa jabatan13 Februari 1919 – 19 April 1919 PendahuluSiegfried von RoedernPenggantiBernhard DernburgMenteri KeadilanMasa jabatan3 Oktober 1919 – 26 Maret 1920 PendahuluOtto LandsbergPenggantiAndreas BlunckMasa jabatan10 Mei 1921 – 22 Oktober 1921 PendahuluRudolf HeinzePenggantiGustav Radbruch Informasi pribadiLahir(1860-02-14)14 Februari 1860Breslau, Kerajaan PrusiaMeninggal5 September 1954(1954-09-05) (umur 94)Berlin Barat, J…

Ini adalah nama Minahasa, marganya adalah Lengkey. Dirk Poltje Lengkey Dirdik Kodiklat TNIMasa jabatan17 Desember 2019 – 21 Januari 2022 PendahuluEko Dono IndartoPenggantiOlot Dwi Cahyono Informasi pribadiKebangsaanIndonesiaAlma materAkademi Angkatan Udara (1991)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1991—sekarangPangkat Marsekal Pertama TNINRP515545SatuanKorps PenerbangSunting kotak info • L • B Marsekal Pertama TNI Dirk Poltje…

Sebuah rumah di Baldwin Street Seorang turis Baldwin Street Mobil diparkir di Baldwin Street Baldwin Street, di kota Dunedin, Selandia Baru, terkenal sebagai jalan paling curam di dunia. Jalan ini terletak di suburb North East Valley, 3,5 kilometer timur laut dari pusat kota Dunedin. Panjangnya 350 meter, bagian dasarnya tidak terlalu curam, dan permukaannya dari aspal, tetapi bagian atas jalan buntu ini sangat curam dan terbuat dari beton. Kecuraman maksimumnya adalah sekitar 1:2,86 (19° atau …

Danny KentKent di 2015KebangsaanInggrisLahir25 November 1993 (umur 30)Chippenham, Wiltshire, InggrisTim saat iniBuildbase SuzukiNo. motor52Situs webdannykent52.com Catatan statistik Karier Kejuaraan Dunia Moto2Tahun aktif2013, 2016–2018 PabrikanTech 3, Kalex, Suter, Speed Up Juara dunia0 Klasemen 201825th (8 poin) Start Menang Podium Pole F. lap Poin 48 0 0 0 0 62 Karier Kejuaraan Dunia Moto3Tahun aktif2012, 2014–2015, 2017 PabrikanKTM, Husqvarna, Honda Juara dunia1 (2015) Klasemen 2017…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

Dutch resistance member (1920–2012) Tina StrobosStrobos in 1941BornTineke Buchter(1920-05-19)May 19, 1920Amsterdam, NetherlandsDiedFebruary 27, 2012(2012-02-27) (aged 91)Rye, New York, USAlma materUniversity of AmsterdamOccupationPsychiatristKnown forRescuing over 100 Jewish Holocaust refugees during World War IISpousesRobert Strobos (c. 1947–1964)Walter Chudson (1967–2002)Children3 children and 2 stepchildrenParent(s)Marie Schotte and Alphonse BuchterAwardsElizabeth B…

Chronologie de la France ◄◄ 1826 1827 1828 1829 1830 1831 1832 1833 1834 ►► Chronologies La Liberté guidant le peuple, par Eugène Delacroix.Données clés 1827 1828 1829  1830  1831 1832 1833Décennies :1800 1810 1820  1830  1840 1850 1860Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap…

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Calcio Rimini 1912. Rimini CalcioStagione 1964-1965Sport calcio Squadra Rimini Allenatore Romolo Bizzotto Presidente Guido Belardinelli Serie C12º posto nel girone B. Maggiori presenzeCampionato: Nanni (33) Miglior marcatoreCampionato: Benetti, Mantella…

مقاطعة لامويل     الإحداثيات 44°36′00″N 72°37′59″W / 44.600075°N 72.633148°W / 44.600075; -72.633148   [1] تاريخ التأسيس 1836  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى فيرمونت  التقسيمات الإدارية بيلفيدير[3]كامبريدج[3]إيدن[3]إلمور[3]جونس…

Seedorf Lambang kebesaranLetak Seedorf di Segeberg NegaraJermanNegara bagianSchleswig-HolsteinKreisSegeberg Municipal assoc.Trave-LandPemerintahan • MayorHorst Schramm (CDU)Luas • Total48,92 km2 (1,889 sq mi)Ketinggian30 m (100 ft)Populasi (2013-12-31)[1] • Total2.106 • Kepadatan0,43/km2 (1,1/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos23823Kode area telepon04555, 04559Pelat kendaraanSESitus webOfficial we…

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍總…

Stasiun Amsterdam CentraalStation Amsterdam CentraalStasiun sentralBangunan Stasiun Amsterdam Centraal, 2014LokasiAmsterdam, Holland Utara BelandaKoordinat52°22′42″N 4°54′0″E / 52.37833°N 4.90000°E / 52.37833; 4.90000JalurAmsterdam–RotterdamAmsterdam–EltenAmsterdam–ZutphenNieuwediep–AmsterdamAmsterdam–SchipholDen Helder–AmsterdamJumlah peron11Jumlah jalur15Operator KA NS NS International Thalys DB Fernverkehr EurostarRute bus Conexxion: 391, 3…

Location of Lauderdale County in Alabama This is a list of the National Register of Historic Places listings in Lauderdale County, Alabama. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Lauderdale County, Alabama, United States. Latitude and longitude coordinates are provided for many National Register properties and districts; these locations may be seen together in an online map.[1] There are 33 properties and dist…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Pour les articles homonymes, voir Casta. Laetitia Casta Laetitia Casta au Festival de Cannes 2016. Données clés Nom de naissance Laetitia Marie Laure Casta Naissance 11 mai 1978 (46 ans)Pont-Audemer (France) Nationalité Française Profession ActriceMannequinRéalisatrice Films notables Astérix et Obélix contre César ErranceGainsbourg (vie héroïque) Séries notables La Bicyclette bleueArletty, une passion coupableUne île Site internet www.laetitia-casta.fr modifier Laetitia Casta, n…

Non-profit zoo opened 1962 and located in Phoenix, Arizona, United States Phoenix ZooPhoenix Zoo Main Entrance33°27′09″N 111°56′57″W / 33.452485°N 111.949258°W / 33.452485; -111.949258Date opened21 November 1962LocationPapago Park, Phoenix, Arizona, United StatesLand area125 acres (51 ha)[1]No. of animals3,000[2]Annual visitors1+ million[3]MembershipsAZA[4] WAZA[5]Major exhibitsMonkey Village, Harmony Farm, Desert L…

American college football season 2021 Central Connecticut Blue Devils footballConferenceNortheast ConferenceRecord4–7 (4–3 NEC)Head coachRyan McCarthy (3rd season)Offensive coordinatorJeff Ambrosie (3rd season)Defensive coordinatorRon DiGravio (3rd season)Home stadiumArute FieldSeasons← 20192022 → 2021 Northeast Conference football standings vte Conf Overall Team   W   L     W   L   Sacred Heart $^   6 – 1 …

Laboratory animal allergy (LAA) is an occupational disease of laboratory animal technicians and scientists.[1][2] It manifests as an allergic response to animal urine, specifically the major urinary proteins (Mups) of rodents, and can lead to the development of asthma.[3] A study of 5641 workers in Japan who were exposed to laboratory animals found 23.1% had one or more allergic symptoms; globally the prevalence among at risk workers is estimated between 11 and 30% [4…

Canadian headquartered international hotel chain. Four Seasons Hotels LimitedTrade nameFour Seasons Hotels and ResortsCompany typePrivateIndustryHospitalityFounded21 March 1961; 63 years ago (1961-03-21)FounderIsadore SharpHeadquartersToronto, Ontario, CanadaNumber of locations129 properties in 44 countriesKey peopleIsadore Sharp (Chairman)Alejandro Reynal (CEO)Revenue US$4.3 billion (2015)[1]OwnerCascade InvestmentKingdom Holding CompanyTriples HoldingNumber of employe…

Kembali kehalaman sebelumnya