Representation of a curve by a function of a parameter
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters.[1] Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation,[2] or parametric system,[3] or parameterization (alternatively spelled as parametrisation) of the object.[1][4][5]
For example, the equations
form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors:
Parametric representations are generally nonunique (see the "Examples in two dimensions" section below), so the same quantities may be expressed by a number of different parameterizations.[1]
In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is one and one parameter is used, for surfaces dimension two and two parameters, etc.).
Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for convenience. Parameterizations are non-unique; more than one set of parametric equations can specify the same curve.[6]
Implicitization
Converting a set of parametric equations to a single implicit equation involves eliminating the variable t from the simultaneous equations This process is called implicitization. If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only: Solving to obtain and using this in gives the explicit equation while more complicated cases will give an implicit equation of the form
where p, q, and r are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to t of xr(t) – p(t) and yr(t) – q(t).
can be (trivially) parameterized by using a free parameter t, and setting
Explicit equations
More generally, any curve given by an explicit equation
can be (trivially) parameterized by using a free parameter t, and setting
Circle
A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation
This equation can be parameterized as follows:
With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot.
In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist. In the case of the circle, such a rational parameterization is
With this pair of parametric equations, the point (−1, 0) is not represented by a real value of t, but by the limit of x and y when t tends to infinity.
Ellipse
An ellipse in canonical position (center at origin, major axis along the x-axis) with semi-axes a and b can be represented parametrically as
An ellipse in general position can be expressed as
as the parameter t varies from 0 to 2π. Here (Xc , Yc) is the center of the ellipse, and φ is the angle between the x-axis and the major axis of the ellipse.
A Lissajous curve is similar to an ellipse, but the x and ysinusoids are not in phase. In canonical position, a Lissajous curve is given by
where kx and ky are constants describing the number of lobes of the figure.
Hyperbola
An east-west opening hyperbola can be represented parametrically by
A north-south opening hyperbola can be represented parametrically as
or, rationally
In all these formulae (h , k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points (−a , 0) and (0 , −a), respectively, are not represented by a real value of t, but are the limit of x and y as t tends to infinity.
Hypotrochoid
A hypotrochoid is a curve traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is at a distance d from the center of the interior circle.
A hypotrochoid for which r = d
A hypotrochoid for which R = 5, r = 3, d = 5
The parametric equations for the hypotrochoids are:
Parametric equations are convenient for describing curves in higher-dimensional spaces. For example:
describes a three-dimensional curve, the helix, with a radius of a and rising by 2πb units per turn. The equations are identical in the plane to those for a circle.
Such expressions as the one above are commonly written as
A torus with major radius R and minor radius r may be defined parametrically as
where the two parameters t and u both vary between 0 and 2π.
R = 2, r = 1/2
As u varies from 0 to 2π the point on the surface moves about a short circle passing through the hole in the torus. As t varies from 0 to 2π the point on the surface moves about a long circle around the hole in the torus.
The parametric equation of the line through the point and parallel to the vector is[7]
Applications
Kinematics
In kinematics, objects' paths through space are commonly described as parametric curves, with each spatial coordinate depending explicitly on an independent parameter (usually time). Used in this way, the set of parametric equations for the object's coordinates collectively constitute a vector-valued function for position. Such parametric curves can then be integrated and differentiated termwise. Thus, if a particle's position is described parametrically as
Another important use of parametric equations is in the field of computer-aided design (CAD).[8] For example, consider the following three representations, all of which are commonly used to describe planar curves.
Type
Form
Example
Description
Explicit
Line
Implicit
Circle
Parametric
Line
Circle
Each representation has advantages and drawbacks for CAD applications.
The explicit representation may be very complicated, or even may not exist. Moreover, it does not behave well under geometric transformations, and in particular under rotations. On the other hand, as a parametric equation and an implicit equation may easily be deduced from an explicit representation, when a simple explicit representation exists, it has the advantages of both other representations.
Implicit representations may make it difficult to generate points on the curve, and even to decide whether there are real points. On the other hand, they are well suited for deciding whether a given point is on a curve, or whether it is inside or outside of a closed curve.
Such decisions may be difficult with a parametric representation, but parametric representations are best suited for generating points on a curve, and for plotting it.[9]
Integer geometry
Numerous problems in integer geometry can be solved using parametric equations. A classical such solution is Euclid's parametrization of right triangles such that the lengths of their sides a, b and their hypotenuse c are coprime integers. As a and b are not both even (otherwise a, b and c would not be coprime), one may exchange them to have a even, and the parameterization is then
where the parameters m and n are positive coprime integers that are not both odd.
By multiplying a, b and c by an arbitrary positive integer, one gets a parametrization of all right triangles whose three sides have integer lengths.
Underdetermined linear systems
A system of m linear equations in n unknowns is underdetermined if it has more than one solution. This occurs when the matrix of the system and its augmented matrix have the same rankr and r < n. In this case, one can select n − r unknowns as parameters and represent all solutions as a parametric equation where all unknowns are expressed as linear combinations of the selected ones. That is, if the unknowns are one can reorder them for expressing the solutions as[10]
Such a parametric equation is called a parametric form of the solution of the system.[10]
The standard method for computing a parametric form of the solution is to use Gaussian elimination for computing a reduced row echelon form of the augmented matrix. Then the unknowns that can be used as parameters are the ones that correspond to columns not containing any leading entry (that is the left most non zero entry in a row or the matrix), and the parametric form can be straightforwardly deduced.[10]
^Shah, Jami J.; Martti Mantyla (1995). Parametric and feature-based CAD/CAM: concepts, techniques, and applications. New York, NY: John Wiley & Sons, Inc. pp. 29–31. ISBN0-471-00214-3.
^ abc
Anton, Howard; Rorres, Chris (2014) [1973]. "1.2 Gaussian Elimination". Elementary Linear Algebra (11th ed.). Wiley. pp. 11–24.
Gulfstream American Peregrine 600 adalah pesawat latih militer dikembangkan di Amerika Serikat pada awal 1980-an, tapi yang tidak lebih jauh dari tahap prototipe. Dikembangkan dari perusahaan pesawat bisnis Hustler. Upaya untuk memasarkannya ke (setidaknya) angkatan udara Australia, Selandia Baru, Jepang, dan China juga terbukti berhasil, dan proyek ini dibatalkan pada tahun 1985. Desain pesawat sayap dan belakang didirikan di pesawat bisnis Gulfstream Aerospace Peregrine. Referensi Artikel bert…
Untuk orang lain dengan nama yang sama, lihat Abdul Hakim. dr.Abdoel Hakim Wali Kota Padang Ke-3 (Era Republik Indonesia)Masa jabatan1947 – 1949 PendahuluSaid RasadPenggantiRasidinWakil Wali Kota Padang Ke-2 (Era Hindia Belanda)Masa jabatan1931 – 1942 PendahuluMr. C. HoogenboomPenggantiPetahana Informasi pribadiLahirPadang Sidempuan, Keresidenan Tapanuli, Hindia BelandaKebangsaan IndonesiaAnakEgon Hakim[1]Alma materDocter Djawa School (STOVIA), Batavia&…
Pasukan pendudukan Sekutu berbaris di Jalan İstiklal selama Pendudukan Konstantinopel Periode kekalahan dan pembubaran Kesultanan Utsmaniyah (1908–1922) dimulai pada masa Era Konstitusional Kedua dan Gerakan Turki Muda. Periode tersebut mengembalikan konstitusi Utsmaniyah 1876 dan memperkenalkan sistem politik multi-partai dengan sebuah sistem elektoral dua tahap (hukum elektoral) di parlemen Utsmaniyah. Konstitusi tersebut membawa harapan karena memodernisasikan institusi-institusi di negara…
Не следует путать с Рашид ад-Дином Синаном. Рашид ад-Динперс. رشیدالدین فضلالله همدانی Министр государства Хулагуидов 1298 — 1317 Рождение ок. 1247Хамадан Смерть 18 июля 1318(1318-07-18)Тебриз, государство Хулагуидов Место погребения Тебриз Имя при рождении Фазлуллах ибн Абу-ль…
Not to be confused with Bear Rocks, Pennsylvania or Bear Rocks Preserve. Bear RockStratigraphic range: 422.9 - 385.3 maThe Bear Rock outcropping is about ten kilometers north of the mouth of the Great Bear River, NW of Tulita, NWT.[1]TypeFormationLocationCoordinates64°58′0″N 125°43′22″W / 64.96667°N 125.72278°W / 64.96667; -125.72278RegionNorthwest TerritoriesCountry CanadaBear Rock (Northwest Territories)Location of Bear Rock in the Northwest Ter…
العلاقات الدومينيكية الليبيرية دومينيكا ليبيريا دومينيكا ليبيريا تعديل مصدري - تعديل العلاقات الدومينيكية الليبيرية هي العلاقات الثنائية التي تجمع بين دومينيكا وليبيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: …
American college basketball season This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2015–16 Hofstra Pride men's basketball team – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this template message) 2015–16 Hofstra Pride men's basketballCAA regular season co–cham…
Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Unione Sportiva Rovereto. Unione Sportiva RoveretoStagione 1951-1952Sport calcio Squadra Rovereto Allenatore Sandro Puppo Presidente(Consiglio di Presidenza) Riccardo Bettini Angelo Granetto Gino Martini Serie C17º posto nel girone B. Retrocesso in IV Serie. 1950-19…
Study of mathematics itself This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Metamathematics – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this message)The title page of the Principia Mathematica (shortened version), an important work of metamathematics. Metamathemat…
American historian A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (October 2016) (Learn how and when to remove this message) Mike WinderMember of the Utah House of Representativesfrom the 30th districtIn officeJanuary 1, 2017 – December 31, 2022Preceded byFred CoxSucceeded byJudy Weeks-Roh…
State park in Orange County, New York Highland Lakes State ParkHighland Lakes State Park, August 2017Location of Highland Lakes State Park within New York StateTypeState parkLocation55-223 Tamms RoadMiddletown, New York[1]Nearest cityMiddletown, New YorkCoordinates41°30′35″N 74°19′25″W / 41.5096°N 74.3236°W / 41.5096; -74.3236Area3,115 acres (12.61 km2)[2]Created1964 (1964)[2]Operated byPalisades Interstate Park Comm…
Axe from North America For other uses, see Tomahawk (disambiguation). Pipe tomahawk Modern commercial tomahawk A tomahawk is a type of single-handed axe used by the many Indigenous peoples and nations of North America. It traditionally resembles a hatchet with a straight shaft.[1][2] In pre-colonial times the head was made of stone, bone, or antler, and European settlers later introduced heads of iron and steel. The term came into the English language in the 17th century as an ad…
Semestene SemèsteneKomuneComune di SemesteneLokasi Semestene di Provinsi SassariNegaraItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaAntonella BudaLuas • Total39,58 km2 (15,28 sq mi)Ketinggian405 m (1,329 ft)Populasi (2016) • Total157[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07010Kode area telepon079Situs webhttp://www.comune.semestene.ss.it Semestene (bahasa Sardinia: …
السيف العجيبThe Sword in the Stone (بالإنجليزية) معلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني القائمة ... فيلم فنتازيا — فيلم موسيقي — قصة تقدم في العمر — فيلم رفقاء — فيلم رسوم متحركة تحريكًا تقليديًّا — فيلم مقتبس من عمل أدبي تاريخ الصدور 25 ديسمبر 1963مدة العرض 79 دقيقةاللغة ا…
الأميرة والضفدعThe Princess and the Frog (بالإنجليزية) الشعارمعلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني القائمة ... فيلم رفقاء — فيلم موسيقي[2][3][4] — كوميديا درامية — فيلم فنتازيا — فيلم رسوم متحركة تحريكًا تقليديًّا — كوميديا رومانسية المواضيع السعي وراء الهدف …
Partai Pelopor Ketua umumEko Suryo SantjojoSekretaris JenderalRistiyantoDibentuk29 Agustus 2002Digabungkan denganHanuraKantor pusatJl. KH. Syafe'i No. A22, Gudang Peluru, Tebet, DKI Jakarta Telp. 021-8299112 Fax. 021-8301469IdeologiPancasilaKursi di DPR3Politik IndonesiaPartai politikPemilihan umum Partai Pelopor, yang sekarang dikenal sebagai Partai Pergerakan Kebangkitan Desa atau Partai Perkasa singkatnya,[1] adalah partai politik di Indonesia yang didirikan di Jakarta pada tangg…
Oval Office desk C&O deskThe C&O desk in the Oval Office during George H. W. Bush's presidencyDesignerRorimer-BrooksDatec. 1920MaterialsWalnutStyle / traditionPartners desk The C&O desk is one of six desks ever used in the Oval Office by a sitting President of the United States. The C&O Desk was used in the executive office by only George H. W. Bush, making it one of two Oval Office desks to be used by only one president there. (The other one is the Johnson desk.) Prior to its us…
Educational institution in England Defence School of TransportNormandy BarracksNear Leconfield, East Riding of Yorkshire in EnglandMastiff protective patrol vehicle outside the DST's HeadquartersBadge of the Defence School of TransportDefence School of TransportShown within the East Riding of YorkshireCoordinates53°52′46″N 000°26′00″W / 53.87944°N 0.43333°W / 53.87944; -0.43333TypeTri-Service Training SchoolArea296 hectares (730 acres)[1]Site info…