Share to: share facebook share twitter share wa share telegram print page

Peripheral tolerance

In immunology, peripheral tolerance is the second branch of immunological tolerance, after central tolerance. It takes place in the immune periphery (after T and B cells egress from primary lymphoid organs). Its main purpose is to ensure that self-reactive T and B cells which escaped central tolerance do not cause autoimmune disease.[1] Peripheral tolerance can also serve a purpose in preventing an immune response to harmless food antigens and allergens.[2]

Self reactive cells are subject to clonal deletion or clonal diversion. Both processes of peripheral tolerance control the presence and production of self reactive immune cells.[3] Deletion of self-reactive T cells in the thymus is only 60-70% efficient, and naive T cell repertoire contains a significant portion of low-avidity self-reactive T cells. These cells can trigger an autoimmune response, and there are several mechanisms of peripheral tolerance to prevent their activation.[4] Antigen-specific mechanisms of peripheral tolerance include persistent of T cell in quiescence, ignorance of antigen and direct inactivation of effector T cells by either clonal deletion, conversion to regulatory T cells (Tregs) or induction of anergy.[5][4] Tregs, which are also generated during thymic T cell development, further suppress the effector functions of conventional lymphocytes in the periphery.[6] Dendritic cells (DCs) participate in the negative selection of autoreactive T cells in the thymus, but they also mediate peripheral immune tolerance through several mechanisms.[7]

Dependence of a particular antigen on either central or peripheral tolerance is determined by its abundance in the organism.[8] B Cells have a lower probability that they will express cell surface markers to pose the threat of causing an autoimmune attack.[9] Peripheral tolerance of B cells is largely mediated by B cell dependence on T cell help. However, B cell peripheral tolerance is much less studied.

Cells mediating peripheral tolerance

Regulatory T cells

Tregs are the central mediators of immune suppression and they play a key role in maintaining peripheral tolerance. The master regulator of Treg phenotype and function is Foxp3. Natural Tregs (nTregs) are generated in the thymus during the negative selection. TCR of nTregs shows a high affinity for self-peptides, Induced Tregs (iTreg) develop from conventional naive helper T cells after antigen recognition in presence of TGF-β and IL-2. iTregs are enriched in the gut to establish tolerance to commensal microbiota and harmless food antigens.[10] Regardless of their origin, once present Tregs use several different mechanisms to suppress autoimmune reactions. These include depletion of IL-2 from the environment, secretion of anti-inflammatory cytokines IL-10, TGF-β and IL-35[11] and induction of apoptosis of effector cells. CTLA-4 is a surface molecule present on Tregs which can prevent CD28 mediated costimulation of T cells after TCR antigen recognition.[6]  

Tolerogenic DCs

DCs are a major cell population responsible for the initiation of the adaptive immune response. They present short peptides on MHCII, which are recognized by specific TCR. After encountering an antigen with recognition danger or pathogen-associated molecular patterns, DCs start the secretion of proinflammatory cytokines, express costimulatory molecules CD80 and CD86 and migrate to the lymph nodes to activate naive T cells. [1] However, immature DCs (iDCs) are able to induce both CD4 and CD8 tolerance. The immunogenic potential of iDCs is weak, because of the low expression of costimulatory molecules and a modest level of MHCII. iDCs perform endocytosis and phagocytosis of foreign antigens and apoptotic cells, which occurs physiologically in peripheral tissues. Antigen-loaded iDCs migrate to the lymph nodes, secrete IL-10, TGF-β and present antigen to the naive T cells without costimulation. If the T cell recognizes the antigen, it is turned into the anergic state, depleted or converted to Treg.[12] iDCs are more potent Treg inducers than lymph node resident DCs.[7] BTLA is a crucial molecule for DCs mediated Treg conversion.[13] Tolerogenic DCs express FasL and TRAIL to directly induce apoptosis of responding T cells. They also produce indoleamine 2,3-dioxygenase (IDO) to prevent T cell proliferation. Retinoic acid is secreted to support iTreg differentiation, too.[14] Nonetheless, upon maturation (for example during the infection) DCs largely lose their tolerogenic capabilities.[12]

LNSCs

Aside from dendritic cells, additional cell populations were identified that are able to induce antigen-specific T cell tolerance. These are mainly the members of lymph node stromal cells (LNSCs). LNSCs are generally divided into several subpopulations based on the expression of gp38 (PDPN) and CD31 surface markers.[15] Among those, only fibroblastic reticular cells and lymphatic endothelial cells (LECs) were shown to play a role in peripheral tolerance. Both of those populations are able to induce CD8 T cell tolerance by the presentation of the endogenous antigens on MHCI molecules.[16][17] LNSCs lack expression of the autoimmune regulator, and the production of autoantigens depends on transcription factor Deaf1. LECs express PD-L1 to engage PD-1 on CD8 T cells to restrict self-reactivity.[18] LNSCs can drive the CD4 T cell tolerance by the presentation of the peptide-MHCII complexes, which they acquired from the DCs.[19] On the other hand, LECs can serve as a self-antigen reservoir and can transport self-antigens to DCs to direct self-peptide-MHCII presentation to CD4 T cells. In mesenteric lymph nodes(mLN), LNSCs can induce Tregs directly by secretion of TGF-β or indirectly by imprinting mLN-resident DCs.[18]

Intrinsic mechanisms of T cell peripheral tolerance

Although the majority of self-reactive T cell clones are deleted in the thymus by the mechanisms of central tolerance, low affinity self-reactive T cells continuously escape to the immune periphery.[8] Therefore, additional mechanisms exist to prevent self-reactive and unrestained T cells responses.

Quiescence

When naive T cells exit the thymus, they are in a quiescent state. That means they are in the non-proliferative, G0 stage of the cell cycle and they have low metabolic, transcriptional and translational activities, but still retain the capacity to enter the cell cycle.[20] Quiescence can prevent naive T cell activation after tonic signaling, meaning that T cells may be constitutively activated when not in the presence of a ligand.[21] After antigen exposure and costimulation, naive T cells start the process called quiescence exit, which results in proliferation and effector differentiation.[22]

Naive cells must enter and exit a quiescent state at the proper timing in their life cycle. If T cells exit a quiescence prematurely there is a lack of tolerance to potential self-reactive cells. T cells rely on negative regulators to keep them in a quiescence state until they are ready for exit, the down regulation of negative regulators increases T cell activation. Premature and over activation of T cells can lead to harmful down stream responses and possibly trigger an autoimmune response.[23]

As cells exit a quiescent state they will up regulate enzymes that are responsible for production of essential pathways (nucleic acids, proteins, carbohydrates, etc.).[23] At this stage the T cell will enter the cell cycle and continue to be metabolically active.

Ignorance

When self-reactive T cells escape thymic deletion they may enter an ignorant state.[24] Self-reactive T cells can fail to initiate immune response after recognition of self-antigen. These T cells are not classified as dysfunctional members of the immune response, rather they are antigen-inexperienced naive cells that will remain in circulation.[25] These cells remain the ability to become activated if in the presence of the correct stimuli.

Ignorance can be seen in situations where there is not a high enough concentration of antigen to trigger activation. The intrinsic mechanism of ignorance is when the affinity of TCR to antigen is too low to elicit T cell activation. There is also an extrinsic mechanism. Antigens, which are present in generally low numbers, can´t stimulate T cells sufficiently.[1] Additionally, there are anatomical barriers that prohibit the activation of these T cells. These specialized mechanisms ensuring ignorance by the immune system have developed in so-called immune privileged organs.[5]

T cells can overcome ignorance through a sufficient signal from signaling molecules (cytokines, infection, inflammatory stimuli, etc.) and induce an autoimmune response.[25] In the inflammatory context, T cells can override ignorance and induce autoimmune disease.[4]

Anergy

Anergy is a state of functional unresponsiveness induced upon self antigen recognition.[26] T-cells can be made non-responsive to antigens presented if the T-cell engages an MHC molecule on an antigen presenting cell (signal 1) without engagement of costimulatory molecules (signal 2). Co-stimulatory molecules are upregulated by cytokines (signal 3) in the context of acute inflammation. Without pro-inflammatory cytokines, co-stimulatory molecules will not be expressed on the surface of the antigen presenting cell, and so anergy will result if there is an MHC-TCR interaction between the T cell and the APC.[5]  TCR stimulation leads to translocation of NFAT into the nucleus. In the absence of costimulation, there is no MAPK signaling in T cells and translocation of transcription factor AP-1 into the nucleus is impaired. This disbalance of transcription factors in T cells results in the expression of several genes involved in forming an anergic state.[27]  Anergic T cells show long-lasting epigenetic programming that silences effector cytokine production. Anergy is reversible and T cells can recover their functional responsiveness in the absence of the antigen.[4]  

Peripheral deletion

Before release into the periphery T cells are subjected to thymic deletion if they prove to have the capacity to react with self. Peripheral deletion is the disposal of potential self reactive T cells that escaped thymic deletion.[28]

After T cell response to co-stimulation-deficient antigen, a minor population of T cells develop anergy and a large proportion of T cells are rapidly lost by apoptosis. This cell death can be mediated by intrinsic pro-apoptotic family member BIM. The balance between proapoptotic BIM and the antiapoptotic mediator BCL-2 determine the eventual fate of the tolerized T cell.[4]  There are also extrinsic mechanisms of deletion mediated by the cytotoxic activity of Fas/FasL or TRAIL/TRAILR interaction.[14] Cell death can be mediated by intrinsic of extrinsic methods as mentioned. In most instances there is an up regulation of death markers or the presence of Bcl-2 proteins, which are proteins that are essential in facilitating programmed cell death.[28]

Immunoprivileged organs

Immunopriviledged organs evolved mechanisms in which specialized tissue cells and immune cells can mount an appropriate response without disturbing the specialized tissue.[29] Immunopathogenic disturbances are not present in a variety of specialized organs such as; the eyes, reproductive organs and the central nervous system. These areas are protected by several mechanisms: Fas-ligand expression binds Fas on lymphocytes inducing apoptosis, anti-inflammatory cytokines (including TGF-beta and interleukin 10) and blood-tissue-barrier with tight junctions between endothelial cells.

Split tolerance

Split tolerance describes how some antigens can trigger an immune response in one aspect of the immune system and the same antigen could not trigger a response in another set of immune cells. Since many pathways of immunity are interdependent, they do not all need to be tolerized. For example, tolerized T cells will not activate auto-reactive B cells. Without this help from CD4 T cells, the B cells will not be activated.[1]

References

  1. ^ a b c d Janeway, Charles (2001-01-01). Immunobiology Five. Garland Pub. ISBN 9780815336426.
  2. ^ Soyer, O. U.; Akdis, M.; Ring, J.; Behrendt, H.; Crameri, R.; Lauener, R.; Akdis, C. A. (2013). "Mechanisms of peripheral tolerance to allergens". Allergy. 68 (2): 161–170. doi:10.1111/all.12085. ISSN 1398-9995. PMID 23253293. S2CID 24008758.
  3. ^ Xing, Yan; Hogquist, Kristin A. (June 2012). "T-Cell Tolerance: Central and Peripheral". Cold Spring Harbor Perspectives in Biology. 4 (6): a006957. doi:10.1101/cshperspect.a006957. ISSN 1943-0264. PMC 3367546. PMID 22661634.
  4. ^ a b c d e ElTanbouly, Mohamed A.; Noelle, Randolph J. (April 2021). "Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey". Nature Reviews Immunology. 21 (4): 257–267. doi:10.1038/s41577-020-00454-2. ISSN 1474-1741. PMID 33077935. S2CID 224808870.
  5. ^ a b c Mueller, Daniel L (2010). "Mechanisms maintaining peripheral tolerance". Nature Immunology. 11 (1): 21–27. doi:10.1038/ni.1817. PMID 20016506. S2CID 9612138.
  6. ^ a b Cretney, Erika; Kallies, Axel; Nutt, Stephen L. (2013). "Differentiation and function of Foxp3+ effector regulatory T cells". Trends in Immunology. 34 (2): 74–80. doi:10.1016/j.it.2012.11.002. PMID 23219401.
  7. ^ a b Hasegawa, Hitoshi; Matsumoto, Takuya (2018). "Mechanisms of Tolerance Induction by Dendritic Cells In Vivo". Frontiers in Immunology. 9: 350. doi:10.3389/fimmu.2018.00350. ISSN 1664-3224. PMC 5834484. PMID 29535726.
  8. ^ a b Malhotra, Deepali; Linehan, Jonathan L; Dileepan, Thamotharampillai; Lee, You Jeong; Purtha, Whitney E; Lu, Jennifer V; Nelson, Ryan W; Fife, Brian T; Orr, Harry T; Anderson, Mark S; Hogquist, Kristin A; Jenkins, Marc K (2016). "Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns". Nature Immunology. 17 (2): 187–195. doi:10.1038/ni.3327. PMC 4718891. PMID 26726812.
  9. ^ Getahun, Andrew (May 2022). "The role of inhibitory signaling in peripheral B cell tolerance". Immunological Reviews. 307 (1): 27–42. doi:10.1111/imr.13070. ISSN 0105-2896. PMC 8986582. PMID 35128676.
  10. ^ Kanamori, Mitsuhiro; Nakatsukasa, Hiroko; Okada, Masahiro; Lu, Qianjin; Yoshimura, Akihiko (2016-11-01). "Induced Regulatory T Cells: Their Development, Stability, and Applications". Trends in Immunology. 37 (11): 803–811. doi:10.1016/j.it.2016.08.012. ISSN 1471-4906. PMID 27623114.
  11. ^ Dominguez-Villar, Margarita; Hafler, David A. (July 2018). "Regulatory T cells in autoimmune disease". Nature Immunology. 19 (7): 665–673. doi:10.1038/s41590-018-0120-4. ISSN 1529-2916. PMC 7882196. PMID 29925983.
  12. ^ a b Steinman, Ralph M.; Hawiger, Daniel; Nussenzweig, Michel C. (2003-04-01). "Tolerogenic dendritic cells". Annual Review of Immunology. 21 (1): 685–711. doi:10.1146/annurev.immunol.21.120601.141040. ISSN 0732-0582. PMID 12615891.
  13. ^ Jones, Andrew; Bourque, Jessica; Kuehm, Lindsey; Opejin, Adeleye; Teague, Ryan M.; Gross, Cindy; Hawiger, Daniel (2016). "Immunomodulatory Functions of BTLA and HVEM Govern Induction of Extrathymic Regulatory T Cells and Tolerance by Dendritic Cells". Immunity. 45 (5): 1066–1077. doi:10.1016/j.immuni.2016.10.008. PMC 5112132. PMID 27793593.
  14. ^ a b Domogalla, Matthias P.; Rostan, Patricia V.; Raker, Verena K.; Steinbrink, Kerstin (2017). "Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity". Frontiers in Immunology. 8: 1764. doi:10.3389/fimmu.2017.01764. ISSN 1664-3224. PMC 5770648. PMID 29375543.
  15. ^ Koning, Jasper J.; Mebius, Reina E. (2012). "Interdependence of stromal and immune cells for lymph node function". Trends in Immunology. 33 (6): 264–270. doi:10.1016/j.it.2011.10.006. PMID 22153930.
  16. ^ Fletcher, Anne L.; Lukacs-Kornek, Veronika; Reynoso, Erika D.; Pinner, Sophie E.; Bellemare-Pelletier, Angelique; Curry, Mark S.; Collier, Ai-Ris; Boyd, Richard L.; Turley, Shannon J. (2010-04-12). "Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions". Journal of Experimental Medicine. 207 (4): 689–697. doi:10.1084/jem.20092642. ISSN 0022-1007. PMC 2856033. PMID 20308362.
  17. ^ Cohen, Jarish N.; Guidi, Cynthia J.; Tewalt, Eric F.; Qiao, Hui; Rouhani, Sherin J.; Ruddell, Alanna; Farr, Andrew G.; Tung, Kenneth S.; Engelhard, Victor H. (2010-04-12). "Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation". Journal of Experimental Medicine. 207 (4): 681–688. doi:10.1084/jem.20092465. ISSN 0022-1007. PMC 2856027. PMID 20308365.
  18. ^ a b Krishnamurty, Akshay T.; Turley, Shannon J. (April 2020). "Lymph node stromal cells: cartographers of the immune system". Nature Immunology. 21 (4): 369–380. doi:10.1038/s41590-020-0635-3. ISSN 1529-2916. PMID 32205888. S2CID 214618784.
  19. ^ Dubrot, Juan; Duraes, Fernanda V.; Potin, Lambert; Capotosti, Francesca; Brighouse, Dale; Suter, Tobias; LeibundGut-Landmann, Salomé; Garbi, Natalio; Reith, Walter (2014-06-02). "Lymph node stromal cells acquire peptide–MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance". Journal of Experimental Medicine. 211 (6): 1153–1166. doi:10.1084/jem.20132000. ISSN 0022-1007. PMC 4042642. PMID 24842370.
  20. ^ Urbán, Noelia; Cheung, Tom H. (2021-02-01). "Stem cell quiescence: the challenging path to activation". Development. 148 (3): dev165084. doi:10.1242/dev.165084. ISSN 0950-1991. PMC 7888710. PMID 33558315.
  21. ^ Ajina, Adam; Maher, John (2018-09-01). "Strategies to Address Chimeric Antigen Receptor Tonic Signaling". Molecular Cancer Therapeutics. 17 (9): 1795–1815. doi:10.1158/1535-7163.mct-17-1097. ISSN 1535-7163. PMC 6130819. PMID 30181329.
  22. ^ Chapman, Nicole M.; Boothby, Mark R.; Chi, Hongbo (January 2020). "Metabolic coordination of T cell quiescence and activation". Nature Reviews Immunology. 20 (1): 55–70. doi:10.1038/s41577-019-0203-y. ISSN 1474-1741. PMID 31406325. S2CID 199542651.
  23. ^ a b Marescal, Océane; Cheeseman, Iain M. (November 2020). "Cellular Mechanisms and Regulation of Quiescence". Developmental Cell. 55 (3): 259–271. doi:10.1016/j.devcel.2020.09.029. hdl:1721.1/138195.2. PMC 7665062. PMID 33171109.
  24. ^ Parish, Ian A; Heath, William R (February 2008). "Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells". Immunology & Cell Biology. 86 (2): 146–152. doi:10.1038/sj.icb.7100161. ISSN 0818-9641.
  25. ^ a b Schietinger, Andrea; Greenberg, Philip D. (February 2014). "Tolerance and exhaustion: defining mechanisms of T cell dysfunction". Trends in Immunology. 35 (2): 51–60. doi:10.1016/j.it.2013.10.001. PMC 3946600. PMID 24210163.
  26. ^ Kalekar, Lokesh A.; Mueller, Daniel L. (2017-04-01). "Relationship between CD4 Tregs and anergy in vivo". Journal of Immunology. 198 (7): 2527–2533. doi:10.4049/jimmunol.1602031. ISSN 0022-1767. PMC 5363282. PMID 28320913.
  27. ^ Macián, Fernando; Garcı́a-Cózar, Francisco; Im, Sin-Hyeog; Horton, Heidi F.; Byrne, Michael C.; Rao, Anjana (2002-06-14). "Transcriptional Mechanisms Underlying Lymphocyte Tolerance". Cell. 109 (6): 719–731. doi:10.1016/S0092-8674(02)00767-5. ISSN 0092-8674. PMID 12086671. S2CID 15599878.
  28. ^ a b Herndon, John M.; Stuart, Patrick M.; Ferguson, Thomas A. (2005-04-01). "Peripheral Deletion of Antigen-Specific T Cells Leads to Long-Term Tolerance Mediated by CD8+ Cytotoxic Cells". The Journal of Immunology. 174 (7): 4098–4104. doi:10.4049/jimmunol.174.7.4098. ISSN 0022-1767.
  29. ^ Streilein, J. Wayne; Takeuchi, Masaharu; Taylor, Andrew W. (February 1997). "Immune privilege, T-cell tolerance, and tissue-restricted autoimmunity". Human Immunology. 52 (2): 138–143. doi:10.1016/S0198-8859(96)00288-1. PMID 9077562.

Read other articles:

Ini adalah nama Korea; marganya adalah Lee. ChangminNama asal이창민LahirLee Chang-min1 Mei 1986 (umur 37)Tenafly, New Jersey, Amerika SerikatTempat tinggalSeoul, Korea SelatanPekerjaanPenyanyiPenariAktorMCKarier musikGenreK-popR&BInstrumenVokalTahun aktif2008–sekarangLabelJYP Entertainment (2008–2015) Big Hit Entertainment (2015–sekarang)Artis terkait2AM2PMJYP NationOne DayHomme Templat:Korean membutuhkan parameter |hangul=. Lee Chang-min (Hangul: 이창…

Majimak seonmulNama lainHangul마지막 선물 Hanja마지막 膳物 Alih Aksara yang DisempurnakanMajimak SeonmulMcCune–ReischauerMajimak Sŏnmul SutradaraKim Yeong-joonProduserJeong Tae-wonJo Seon-mookKim Jong-hyeonDitulis olehBom Ee-hwanKim Tae-kwanKim Seon-miPemeranShin Hyun-joonHeo Joon-hoSinematograferLee Sung-jaePenyuntingNam Na-yeongDistributorShowboxTanggal rilis 5 Februari 2008 (2008-02-05) Durasi105 menitNegaraKorea SelatanBahasaKoreaPendapatankotorUS$1,857,015[1]…

Duta Besar Indonesia untuk SwissMerangkap LiechtensteinLambang Kementerian Luar Negeri Republik IndonesiaPetahanaI Gede Ngurah Swajayasejak 2023KantorBern, SwissDicalonkan olehJoko WidodoPejabat perdanaAlfian Yusuf HelmiDibentukJuli 1952Situs webwww.kemlu.go.id/bern/id Duta Besar Indonesia untuk Swiss merupakan pemimpin delegasi Indonesia untuk hubungan bilateral Indonesia dan Swiss. Sejarah KBRI Bern dibuka pada tahun 1952 dan merangkap sebagai perwakilan Indonesia untuk Kantor PBB di Jene…

العلاقات الزامبية الغرينادية زامبيا غرينادا   زامبيا   غرينادا تعديل مصدري - تعديل   العلاقات الزامبية الغرينادية هي العلاقات الثنائية التي تجمع بين زامبيا وغرينادا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن…

حلقات زحلمعلومات عامةصنف فرعي من حلقة كوكبية المكتشف أو المخترع كريستيان هوغنس[1] زمن الاكتشاف أو الاختراع 1656[1] الجرم السماوي الأم زحل لديه جزء أو أجزاء حاجز كاسينيPhoebe ring (en) gap in the rings of Saturn (en) تعديل - تعديل مصدري - تعديل ويكي بيانات طغت على المجموعة الكاملة من حلقات رئ…

Danish cyclist (born 1941) For the Danish Olympic rower, see Mogens Jensen (rower). For the Danish politician, see Mogens Jensen (politician). Mogens FreyMogens Frey at the 1967 World ChampionshipsPersonal informationFull nameMogens Frey JensenBorn (1941-07-02) 2 July 1941 (age 82)Glostrup, DenmarkTeam informationDisciplineTrack, roadRoleRiderMajor winsGold medal 1968 Olympic Games Medal record Representing  Denmark Olympic Games 1968 Mexico City Team pursuit 1968 Mexico City 4000…

Turkic ethnic group Not to be confused with Yokuts, Yupiks, Yakult, or Yakutsk. Sakhas redirects here. Not to be confused with Sakas. YakutsСахаFlag of YakutiaTotal populationc. 500,000Regions with significant populations Russia  Sakha478,085 (2010 census)[1] Kazakhstan415 (2009 census)[2][3][4] Ukraine304 (2001 census)[5] Latvia37 (2021 statistics)[6]LanguagesYakut, RussianReligionOrthodox Christianity, Aiyy Faith, Sha…

Sporting event delegationEstonia at the2023 World Athletics ChampionshipsFlag of EstoniaWA codeESTin Budapest, Hungary19 August 2023 (2023-08-19) – 27 August 2023 (2023-08-27)Competitors7 (5 men and 2 women)Medals Gold 0 Silver 0 Bronze 0 Total 0 World Athletics Championships appearances (overview)1993199519971999200120032005200720092011201320152017201920222023← 2022 2025 → Estonia competed at the 2023 World Athletics Championships in Bu…

Building in Cluj-Napoca, RomaniaBánffy PalaceExterior viewGeneral informationArchitectural styleBaroqueTown or cityCluj-NapocaCountryRomaniaConstruction started1774Completed1786ClientGyörgy Bánffy, governor of TransylvaniaDesign and constructionArchitect(s)Johann Eberhard Blaumann Bánffy Castle is a baroque building of the 18th century in Cluj-Napoca, designed by the German architect Johann Eberhard Blaumann.[1] Built between 1774 and 1775 it is considered the most representative for…

South Korean politician (born 1965) Kwon Chil-seung권칠승Minister of SMEs and StartupsIn office5 February 2021 – 12 May 2022PresidentMoon Jae-inPrime MinisterChung Sye-kyunKim Boo-kyumPreceded byPark Young-sunSucceeded byLee YoungMember of the National AssemblyIncumbentAssumed office 30 May 2016Preceded byconstituency createdConstituencyGyeonggi Hwaseong C Personal detailsBorn (1965-11-18) 18 November 1965 (age 58)Yeongcheon, North Gyeongsang Province, South KoreaPolitical…

American software company Wildfire InteractiveIndustrySocial marketing SaaSFounded2008FoundersAlain Chuard, Victoria RansomFateAcquired by Google, 2012 Wildfire Interactive Inc, or Wildfire, was a startup software company based in Redwood City that developed a social marketing application that enabled businesses to create, optimize and measure their presence on social networks such as Facebook, Twitter, Pinterest and YouTube.[1][2] It was founded in 2008 by Victoria Ransom and Al…

Internazionali d'Italia 2002Doppio femminile Sport Tennis Vincitrici Virginia Ruano Pascual Paola Suárez Finaliste Conchita Martínez Patricia Tarabini Punteggio 6-3, 6-4 Tornei Singolare uomini (q) donne   Doppio uomini donne 2001 2003 Voce principale: Internazionali d'Italia 2002. Il torneo di doppio femminile degli Internazionali d'Italia 2002, facente parte del WTA Tour 2002, ha avuto come vincitrici Virginia Ruano Pascual e Paola Suárez che hanno battuto in finale Conchita Martínez …

Ada usul agar Transavia.com diganti judulnya dan dipindahkan ke Transivia (Diskusikan).Transavia IATA ICAO Kode panggil HV TRA TRANSAVIA Didirikan1965 (sebagai Transavia Limburg N.V.)Mulai beroperasi17 November 1966PenghubungAmsterdamEindhovenRotterdam/Den HaagProgram penumpang setiaFlying BlueAnak perusahaanTransavia FranceArmada42Tujuan88SloganIt's a pleasurePerusahaan indukKLMKantor pusatHaarlemmermeer, BelandaTokoh utamaMarcel de Nooijer (CEO)Situs webwww.transavia.comTransavia Airlines …

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

  此条目页的主題是香港九龍的渡船街。关于其他地方的同名街道,請見「渡船街」。 Ferry Street渡船街渡船街與西九龍走廊的交匯路段,此段連同渡船街天橋隸屬於5號幹線。命名緣由命名文件:1941年10月24日憲報第1260號政府公告、1947年5月23日憲報第431號政府公告、1975年3月14日憲報第585號政府公告、2020年10月16日憲報第5984號政府公告命名日期1941年10月24日[1]道路長…

Bangladeshi author and filmmaker (1948–2012) Humayun AhmedAhmed in 2010Native nameহুমায়ূন আহমেদBorn(1948-11-13)13 November 1948[1]Netrokona, East Bengal, Pakistan (now Mymensingh, Bangladesh)Died19 July 2012(2012-07-19) (aged 63)New York City, New York, United StatesResting placePirujali, Dhaka, Bangladesh[2]OccupationWriter, film director, academic, dramatistNationalityBangladeshiAlma materUniversity of Dhaka (BS, MS)North Dakota State Univ…

Symbol used in the Minoan civilisation The reconstructed horns of consecration at Knossos Horns of Consecration is a term coined by Sir Arthur Evans[1] for the symbol, ubiquitous in Minoan civilization, that is usually thought to represent the horns of the sacred bull. Sir Arthur Evans concluded, after noting numerous examples in Minoan and Mycenaean contexts, that the Horns of Consecration were a more or less conventionalised article of ritual furniture derived from the actual horns of …

American single engine utility aircraft CH-400 Skyrocket XRE-3 Role Civil utility aircraftType of aircraft Manufacturer Bellanca First flight 1930 Primary user Private pilot owners Number built 32 The Bellanca CH-400 Skyrocket is a six-seat utility aircraft built in the United States in the 1930s, a continuation of the design lineage that had started with the Bellanca WB-2. Retaining the same basic airframe of the preceding CH-200 and CH-300, the CH-400 was fitted with a more powerful Pratt…

Ein Vasall schwört den Lehnseid vor dem thronenden Pfalzgrafen Friedrich I. von der Pfalz.[1] Ein Vasall (von keltisch gwas, von lateinisch vassus „Knecht“) war im Fränkischen Reich (5.–9. Jahrhundert) ein Freier, der in einem persönlichen Treueverhältnis (Vasallentreue) zu einem mächtigen Herrn als Schutzherrn stand.[2] Aufgrund des eingegangenen personenrechtlichen Verhältnisses ergaben sich gegenseitige Schutz- und Gehorsamspflichten für die Beteiligten. Der …

This article is about the film. For the franchise, see American Satan (franchise). 2017 American supernatural musical thriller film American SatanTheatrical release posterDirected byAsh AvildsenWritten byAsh Avildsen Matty BeckermanProduced byAsh Avildsen Matty Beckerman Sean E. Demott Andy Gould Jeff Rice Isen Robbins Aimee SchoofStarring Andy Biersack Ben Bruce John Bradley Booboo Stewart Drake Bell Denise Richards Malcolm McDowell CinematographyAndrew StrahornMusic byJonathan Davis Nicholas O…

Kembali kehalaman sebelumnya