Share to: share facebook share twitter share wa share telegram print page

Perovskite nanocrystal

Perovskite nanocrystals can emit brightly when excited by ultraviolet or blue light.  Their colors are tunable across the entire visible spectrum by changing the halide from chloride (UV/blue) to bromide (green) and iodide (red)[1]

Perovskite nanocrystals are a class of semiconductor nanocrystals, which exhibit unique characteristics that separate them from traditional quantum dots.[2][3][4][5] Perovskite nanocrystals have an ABX3 composition where A = cesium, methylammonium (MA), or formamidinium (FA); B = lead or tin; and X = chloride, bromide, or iodide.[6]

Their unique qualities largely involve their unusual band-structure which renders these materials effectively defect tolerant or able to emit brightly without surface passivation. This is in contrast to other quantum dots such as CdSe which must be passivated with an epitaxially matched shell to be bright emitters. In addition to this, lead-halide perovskite nanocrystals remain bright emitters when the size of the nanocrystal imposes only weak quantum confinement.[7][8] This enables the production of nanocrystals that exhibit narrow emission linewidths regardless of their polydispersity.

The combination of these attributes and their easy-to-perform synthesis[9][10] has resulted in numerous articles demonstrating the use of perovskite nanocrystals as both classical and quantum light sources with considerable commercial interest. Perovskite nanocrystals have been applied to numerous other optoelectronic applications[11][12] such as light emitting diodes,[13][14][15][16][17][18] lasers,[19][20] visible communication,[21] scintillators,[22][23][24] solar cells,[25][26][27] and photodetectors.[28]

Physical properties

Perovskite nanocrystals possess numerous unique attributes: defect tolerance, high quantum yield, fast rates of radiative decay and narrow emission line width in weak confinement, which make them ideal candidates for a variety of optoelectronic applications.[29][30]

Bulk vs. nano

The intriguing optoelectronic properties of lead halide perovskites were first studied in single crystals and thin films.:[31][32][33][34] From these reports, it was discovered that these materials possess high carrier mobility, long carrier lifetimes, long carrier diffusion lengths, and small effective carrier masses.[35][31][36][37] Unlike their nanocrystal counterparts, bulk ABX3 materials are non-luminescent at room temperature, but they do exhibit bright photoluminescence once cooled to cryogenic temperatures.[36][38][39]

Defect-tolerance

Contrary to the characteristics of other colloidal quantum dots such as CdSe, ABX3 QDs are shown to be bright, high quantum yield (above 80%) and stable emitters with narrow linewidths without surface passivation.[40][7][41] In II-VI systems, the presence of dangling bonds on the surface results in photoluminescence quenching and photoluminescent intermittence or blinking. The lack of sensitivity to the surface can be rationalized from the electronic band structure and density of states calculations for these materials. Unlike conventional II-VI semiconductors where the band gap is formed by bonding and antibonding orbitals, the frontier orbitals in ABX3 QDs are formed by antibonding orbitals composed of Pb 6s 6p and X np orbitals (n is the principle quantum number for the corresponding halogen atom).[42] As a result, dangling bonds (under-coordinated atoms) result in intraband states or shallow traps instead of deep mid-gap states (e.g. d in CdSe QDs. This observation was corroborated by computational studies which demonstrated that the electronic structure of CsPbX3 materials exhibits a trap-free band gap.[43] Furthermore, band structure calculations performed by various groups have demonstrated that these are direct band gap materials at their R-point (a critical point of the Brillouin zone) with a composition dependent band gaps.[41][44][45][46]

Photoluminescence

It was discovered in 2015 that the photoluminescence of perovskite nanocrystals can be post-synthetically tuned across the visible spectral range through halide substitution to obtain APbCl3, APb(Cl,Br)3, APbBr3, APb(Br,I)3, and APbI3; there was no evidence of APb(Cl,I)3.[47][48] The change in band-gap with composition can be described by Vegard's Law, which describes the change in lattice parameter as a function of the change in composition for a solid solution. However, the change in lattice parameter can be rewritten to describe the change in band gap for many semiconductors. The change in band gap directly affects the energy or wavelength of light that can be absorbed by the material and therefore its color. Furthermore, this directly alters the energy of emitted light according to the Stokes shift of the material. This quick, post-synthetic anion-tunability is in contrast to other quantum dot systems[49][50] where emission wavelength is primarily tuned through particle size by altering the degree of quantum confinement.

Aside from tuning the absorption edge and emission wavelength by anion substitution, it was also observed that the A-site cation also affects both properties.[51] This occurs as a result of the distortion of the perovskite structure and the tilting of octahedra due to the size of the A-cation. Cs, which yields a Goldschmidt tolerance factor of less than one, results in a distorted, orthorhombic structure at room temperature. This results in reduced orbital overlap between the halide and lead atoms and blue shifts the absorption and emission spectra. On the other hand, FA yields a cubic structure and results in FAPbX3 having red shifted absorption and emission spectra as compared to both Cs and MA. Of these three cations, MA is intermediate size between Cs and FA and therefore results in absorption and emission spectra intermediate between those of Cs and FA. Through the combination of both anionic and cationic tuning, the whole spectrum ranging from near-UV to near-IR can be covered.[52]

Absorption Coefficient

Recent studies have demonstrated that CsPbBr3 nanocrystals have an absorption coefficient of 2x105 cm−1 at 335 nm and 8x104 cm−1 at 400 nm.[53][54]

Single Dot Spectroscopy of Perovskite Nanocrystals

Blinking and Spectral diffusion

Spectroscopic studies of individual nanocrystals have revealed blinking-free emission and very low spectral diffusion without a passivating shell around the NCs.[55][56][57][58] Studies have also demonstrated blinking-free emission at room temperature with a strongly reduced Auger recombination rate at room temperature (CsPbI3 NCs).[59]

Exciton fine-structure and the Rashba effect

It was observed that emission from perovskite nanocrystals may be the result of a bright (optically active) triplet state.[30] Several effects have been suggested to play a role on the exciton fine structure such as electron-hole exchange interactions,[60] crystal field and shape anisotropy,[61][62] as well as the Rashba effect. Recent reports have described the presence of the Rashba effect within bulk-[63] and nano- CsPbBr3 and CsPb(Br,Cl)3.[64] While it has been reported that the Rashba effect contributes to the existence of a lowest energy triplet state CsPb(Br,Cl)3, recent work on FAPbBr3 has indicated the presence of a lower lying dark state, which can be activated with the application of a magnetic field.[65][66]

Numerous quantum optical technologies require coherent light sources. Perovskite nanocrystals have been demonstrated as sources of such light[67] as well as suitable materials for the generation of single photons with high coherence.[68][69]

Self-assembly and Superfluorescence

Monodisperse perovskite nanocrystals can be assembled into cubic superlattices, which can range from a few hundreds of nanometers to tens of microns in size[70][71][72][73][74] and show tunable photoluminescence by changing nanocrystal composition via anion exchange (for example, from green-emitting CsPbBr3 nanocrystal superlattices to yellow and orange emitting CsPb(I
1−x
Br
x
)
3
nanocrystal superlattices to red-emitting CsPbI3 ones).[75] These superlattices have been reported to exhibit very high degree of structural order[76] and unusual optical phenomena such as superfluorescence.[77] In the case of these superlattices, it was reported that the dipoles of the individual nanocrystals can become aligned and then simultaneously emit several pulses of light.[78]

Chemical properties

Synthesis

Early attempts were made to prepare MAPbX3 perovskites as nanocrystals in 2014 by non-template synthesis.[79] It was not until 2015 that CsPbX3 nanocrystals were prepared by the Kovalenko research group at ETH Zurich.[41] by a hot-injection synthesis. Since then numerous other synthetic routes towards the successful preparation of ABX3 NCs have been demonstrated.[80][81]

Hot-injection

The majority of papers reporting on ABX3 NCs make use of a hot injection procedure in which one of the reagents is swiftly injected into a hot solution containing the other reagents and ligands. The combination of high temperature and rapid addition of the reagent result in a rapid reaction that results in supersaturation and nucleation occurring over a very short period of time with a large number of nuclei. After a short period of time, the reaction is quenched by quickly cooling to room temperature.[82][83] Since 2015, several articles detailing improvements to this approach with zwitterionic ligands,[84] branched ligands and post-synthetic treatments[85] have been reported. Recently, soy-lecithin was demonstrated to be a ligand system for these nanocrystals that could stabilize concentrations from several ng/mL up to 400 mg/mL.[86]

A second, popular method for the preparation of ABX3 NCs relies on the ionic nature of APbX3 materials. Briefly, a polar, aprotic solvent such as DMF or DMSO is used to dissolve the starting reagents such as PbBr2, CsBr, oleic acid, and an amine. The subsequent addition of this solution into a non-polar solvent reduces the polarity of the solution and causes precipitation of the ABX3 phase.[87][88]

Microfluidics have been also used to synthesize CsPbX3 NCs and to screen and study synthetic parameters.[89] Recently, a modular microfluidic platform has been developed at North Carolina State University to further optimize the synthesis and composition of these materials.[90]

Other routes

Outside of the traditional synthetic routes, several papers have reported that CsPbX3 NCs could be prepared on supports or within porous structures even without ligands. Dirin et al. first demonstrated that bright NCs of CsPbX3 could be prepared without organic ligands within the pores of mesoporous silica.[7] By using mesoporous silica as a template, the size of CsPbX3 nanodomains is restricted to the pore size. This allows for greater control over emission wavelength via quantum confinement and illustrates the defect tolerant nature of these materials. This concept was later extended to the preparation of ligand-free APbX3 NCs on alkali-halide supports that could be shelled with NaBr without deteriorating their optical properties and protecting the nanocrystals against a number of polar solvents.[8]

As a result of the low melting point and ionic nature of ABX3 materials, several studies have demonstrated that bright ABX3 nanocrystals can also be prepared by ball-milling.[91]

With NCs, the composition can be tuned via ion exchange i.e. the ability to post-synthetically exchange the ions in the lattice for those added. This has been shown to be possible for both anions and cations.

Anion exchange

The anions in the lead halide perovskites are highly mobile. The mobility arises from the diffusion of halide vacancies throughout the lattice, with an activation barrier of 0.29 eV and 0.25 eV for CsPbCl3 and CsPbBr3 respectively.[92] (see: physical properties). This was used by Nedelcu et al.[93] and Akkerman et al.,[94] to demonstrate that the composition of cesium lead halide perovskite nanocrystals could be tuned continuously from CsPbCl3 to CsPbBr3 and from CsPbBr3 to CsPbI3 to obtain emission across the entire visible spectrum. While this was first observed in a colloidal suspension, this was also shown in solid pellets of alkali halide salts pressed with previously synthesized nanocrystals.[95] This same phenomenon has also been observed for MAPbX3 and FAPbX3 NCs.

Cation exchange and doping

Although several reports showed that CsPbX3 NCs could be doped with Mn2+, they accomplished this through the addition of the Mn precursor during the synthesis, and not through cation exchange.[96][97][94][98] Cation exchange can be used to partially exchange Pb2+ with Sn2+, Zn2+, or Cd2+ over the course of several hours.[99] In addition to these cations, gold was also shown to be a suitable candidate for cation exchange yielding a mixed-valent, and distorted, perovskite with the composition Cs2Au(I)Au(III)Br6.[100] A-site cation exchange has also been shown to be a viable route for the transformation of CsPbBr3 to MAPbBr3 and from CsPbI3 to FAPbI3.[82]

Ligand-assisted reprecipitation (LARP)

Ligand-assisted reprecipitation method is dedicated for the preparation of perovskite nanoplatelets (NPls). In this method, the precursors in different solvents whether polar like Dimethylformamide and Dimethyl sulfoxide or non-polar like toluene and hexane are added in the presence of the ligands to form the perovskite NPls theough supersaturation. The NPls thickness obtained from this method depends on the concentration of the ligands as well as the chain length of the organic ligands. Therefore, the thickness can be controlled by ratio between A-cation-oleate and lead-halide precursors in the reaction medium. By adjusting the toluene and acetone during the synthesis, the NPls are crystallized and precipitated at room temperature with these two solvents, respectively.[101]

Morphology

Nanomaterials can be prepared with various morphologies that range from spherical particles/quantum wells (0D) to wires (1D) and platelets or sheets (2D), and this has been previously demonstrated for QDs such as CdSe. While the initial report of lead halide perovskite NCs covered cubic particles, subsequent reports demonstrated that these materials could also be prepared as both platelets (2D)[102] and wires (1D).[103] Due to the varying degrees of quantum confinement present in these different shapes, the optical properties (emission spectrum and mean lifetime) change.[104][105][106] As an example of the effect of morphology, cubic nanocrystals of CsPbBr3 can emit from 470 nm to 520 nm based on their size (470 nm emission requires nanocrystals with an average diameter of less than 4 nm).[41] Within this same composition (CsPbBr3), nanoplatelets exhibit emission that is blue shifted from that of cubes with the wavelength depending on the number of monolayers contained within the platelet (from 440 nm for three monolayers to 460 nm for 5 monolayers).[107] Nanowires of CsPbBr3, on the other hand, emit from 473 nm to 524 nm depending on the width of the wire prepared with lifetimes also in the range of 2.5 ns – 20.6 ns.[108]

Similarly to CsPbBr3, MAPbBr3 NCs also exhibit morphologically dependent optical properties with nanocrystals of MAPbBr3 emitting from 475 nm to 520 nm[109] and exhibiting average lifetimes on the order of 240 ns depending on their composition. Nanoplatelets and nanowires have been reported to emit at 465 nm and 532 nm, respectively.[110]

Structure and composition

Perovskite nanocrystals all have the general composition ABX3 in which A is a large, central cation (typically MA, FA, or Cs) that sits in a cavity surrounded by corner-sharing BX6 octahedra (B = Pb, Sn; X = Cl, Br, I). Depending on the composition, the crystal structure can vary from orthorhombic to cubic, and the stability of a given composition can be qualitatively predicted by its goldschmidt tolerance factor[111]

where t is the calculated tolerance factor and r is the ionic radius of the A, B, and X ions, respectively. Structures with tolerance factors between 0.8 and 1 are expected to have cubic symmetry and form three dimensional perovskite structures such as those observed in CaTiO3. Furthermore, tolerance factors of t > 1 yield hexagonal structures (CsNiBr3 type), and t < 0.8 result in NH4CdCl3 type structures.[112] If the A-site cation is too large (t >1), but packs efficiently, 2D perovskites can be formed.[113]

Distortions and Phase transitions

The corner-sharing BX6 octahedra form a three-dimensional framework through bridging halides. The angle (Φ) formed by B-X-B (metal-halide-metal) can be used to judge the closeness of a given structure to that of an ideal perovskite.[112] Although these octahedra are interconnected and form a framework, the individual octahedra are able to tilt with respect to one another. This tilting is affected by the size of the "A" cation as well as external stimuli such as temperature or pressure.[114][115][116][117]

If the B-X-B angle deviates too far from 180°, phase transitions towards non-luminescent or all-together non-perovskite phases can occur.[118][119] If the B-X-B angle does not deviate very far from 180°, the overall structure of the perovskite remains as a 3D network of interconnected octahedra, but the optical properties may change. This distortion increases the band gap of the material as the overlap between Pb and X based orbitals is reduced. For example, changing the A cation from Cs to MA or FA alters the tolerance factor and decreases the band gap as the B-X-B bond angle approaches 180° and the orbital overlap between the lead and halide atoms increases. These distortions can further manifest themselves as deviations in the band gap from that expected by Vegard's Law for solid solutions.[120][121]

Crystal structure and twinning in nanocrystals

The room temperature crystal structures of the various bulk lead-halide perovskites have been extensively studied and have been reported for the APbX3 perovskites.[122] The average crystal structures of the nanocrystals tend to agree with those of the bulk. Studies have, however, shown that these structures are dynamic[123] and deviate from the predicted structures due to the presence of twinned nanodomains.[124]

Surface chemistry

Calculations as well as empirical observations have demonstrated that perovskite nanocrystals are defect-tolerant semiconductor materials. As a result, they do not require epitaxial shelling or surface passivation since they are insensitive to surface defect states. In general, the perovskite nanocrystal surface is considered to be both ionic and highly dynamic. However, the ionic properties caused the instability of perovskite nanocrystals in humid condition and the degradation process can be accelerated by photoirradiation, which can alter the electronic properties of nanocrystals.[125] Initial reports utilized dynamically bound oleylammonium and oleate ligands that exhibited an equilibrium between bound and unbound states.[54] This resulted in severe instability with respect to purification and washing, which was improved in 2018 with the introduction of zwitterionic ligands.[84] The stability and quality of these colloidal materials was further improved in 2019 when it was demonstrated that deep traps could be generated by the partial destruction of the lead-halide octahedra, and that they could also be subsequently repaired to restore the quantum yield of nanocrystals.[126][127][128]

Applications and Devices

Perovskite NCs are promising materials for the emitting layer of light-emitting diodes (LEDs) as they offer potential advantages over organic LEDs (OLEDs) such as the elimination of precious metals (Ir, Pt) and simpler syntheses.[129] The first report of green electroluminescence (EL) was from MAPbBr3 NCs although no efficiency values were reported.[79] It was later observed that MAPbBr3 NCs could form in a polymer matrix when the precursors for MAPbBr3 thin films were mixed with an aromatic polyidmide precursor.[130] The authors of this study obtained green EL with an external quantum efficiency (EQE) of up to 1.2%.

The first LEDs based on colloidal CsPbX3 NCs demonstrated blue, green and orange EL with sub-1% EQE.[18] Since then, efficiencies have reached above 8% for green LEDs (CsPbBr3 NCs[131]), above 7% for red LEDs (CsPbI3 NCs[132]), and above 1% for blue LEDs (CsPb(Br/Cl)3[133]).

Perovskite MAPbX3 thin films have been shown to be promising materials for optical gain applications such as lasers and optical amplifiers.[134][135] Afterwards, the lasing properties of colloidal perovskite NCs such as CsPbX3 nanocubes,[19][136] MAPbBr3 nanoplatelets[110] and FAPbX3 nanocubes[83][82] were also demonstrated. Thresholds as low as 2 uJ cm−2[137] have been reported for colloidal NCs (CsPbX3) and 220 nJ cm−2 for MAPbI3 nanowires.[138] Interestingly, perovskite NCs show efficient optical gain properties not only under resonant excitation, but also under two-photon excitation[139] where the excitation light falls into the transparent range of the active material. While the nature of optical gain in perovskites is not yet clearly understood, the dominant hypothesis is that the population inversion of excited states required for gain appears to be due to bi-excitonic states in the perovskite.

Perovskite nanocrystals have also been investigated as potential photocatalysts.[140][141][142]

Security

Perovskite nanocrystals doped with large cations such as ethylene diamine (en) were demonstrated to exhibit hypsochromaticity concomitantly with lengthened photoluminescence lifetimes relative to their undoped counterparts.[143] This phenomenon was utilized by researchers to generate single color luminescent QR codes that could only be deciphered by measuring the photoluminescence lifetime. The lifetime measurements were carried out utilizing both time correlated single photon counting equipment as well as a prototype time-of-flight fluorescence imaging device developed by CSEM.

Other phases

Ternary cesium lead halides have multiple stable phases that can be formed; these include CsPbX3 (perovskite), Cs4PbX6 (so called "zero-dimensional" phase due to disconnected [PbX6]4- octahedra), and CsPb2X5.[144] All three phases have been prepared colloidally either by a direct synthesis or via nanocrystal transformations.[145]

A rising research interest in these compounds created a disagreement within the community around the zero-dimensional Cs4PbBr6 phase. Two contradicting claims exist regarding the optical properties of this material: i) the phase exhibits high photoluminescent quantum yield emission at 510-530 nm[146][147] and ii) the phase is non-luminescent in the visible spectrum.[148] It was later demonstrated that pure, Cs4PbBr6 NCs were non-luminescent, and that these could be converted to luminescent CsPbX3 NCs and vice versa.[149][150][151]

A similar debate had occurred regarding the CsPb2Br5 phase, which was also reported as being strongly luminescent.[152] This phase, like the Cs4PbBr6 phase, is a wide gap semiconductor (~3.1 eV), but it is also an indirect-semiconductor and is non-luminescent.[153] The non-luminescent nature of this phase was further demonstrated in NH4Pb2Br5.[83]

Lead-free perovskite nanocrystals

Given the toxicity of lead, there is ongoing research into the discovery of lead-free perovskites for optoelectronics.[154][155] Several lead-free perovskites have been prepared colloidally: Cs3Bi2I9,[156] Cs2PdX6,[157] CsSnX3.[158][159] CsSnX3 NCs, although the closest lead-free analogue to the highly luminescent CsPbX3 NCs, do not exhibit high quantum yields (<1% PLQY)[158] CsSnX3 NCs are also sensitive towards O2 which causes oxidation of Sn(II) to Sn(IV) and renders the NCs non-luminescent.

Another approach to this problem relies on the replacement of the Pb(II) cation with the combination of a monovalent and a trivalent cation i.e. B(II) replaced with B(I) and B(III).[160] Double perovskite nanocrystals such as Cs2AgBiX6 (X = Cl, Br, I),[161] Cs2AgInCl6 (including Mn-doped variant),[162] and Cs2AgInxBi1−xCl6[163] (including Na-doped variant)[164] have been studied as potential alternatives to lead-halide perovskites, although none exhibit narrow, high PLQY emission.

See also

References

  1. ^ Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; et al. (29 January 2015). "Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut". Nano Letters. 15 (6): 3692–3696. Bibcode:2015NanoL..15.3692P. doi:10.1021/nl5048779. PMC 4462997. PMID 25633588.
  2. ^ Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. (2017-11-10). "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals". Science. 358 (6364): 745–750. Bibcode:2017Sci...358..745K. doi:10.1126/science.aam7093. ISSN 0036-8075. PMID 29123061.
  3. ^ Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. (May 2018). "Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals". Nature Materials. 17 (5): 394–405. Bibcode:2018NatMa..17..394A. doi:10.1038/s41563-018-0018-4. ISSN 1476-1122. PMID 29459748. S2CID 3403391.
  4. ^ Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. (2017-11-10). "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals". Science. 358 (6364): 745–750. Bibcode:2017Sci...358..745K. doi:10.1126/science.aam7093. ISSN 0036-8075. PMID 29123061.
  5. ^ Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; et al. (2021-07-27). "State of the Art and Prospects for Halide Perovskite Nanocrystals". ACS Nano. 15 (7): 10775–10981. doi:10.1021/acsnano.0c08903. ISSN 1936-0851. PMC 8482768. PMID 34137264.
  6. ^ Saparov, Bayrammurad; Mitzi, David B. (13 April 2016). "Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design". Chemical Reviews. 116 (7): 4558–4596. doi:10.1021/acs.chemrev.5b00715. OSTI 1593872. PMID 27040120.
  7. ^ a b c Dirin, Dmitry N.; Protesescu, Loredana; Trummer, David; Kochetygov, Ilia V.; Yakunin, Sergii; Krumeich, Frank; et al. (14 September 2016). "Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes". Nano Letters. 16 (9): 5866–5874. Bibcode:2016NanoL..16.5866D. doi:10.1021/acs.nanolett.6b02688. PMC 5799875. PMID 27550860.
  8. ^ a b Dirin, Dmitry N.; Benin, Bogdan M.; Yakunin, Sergii; Krumeich, Frank; Raino, Gabriele; Frison, Ruggero; Kovalenko, Maksym V. (2019-10-22). "Microcarrier-Assisted Inorganic Shelling of Lead Halide Perovskite Nanocrystals". ACS Nano. 13 (10): 11642–11652. doi:10.1021/acsnano.9b05481. ISSN 1936-0851. PMC 6812064. PMID 31585035.
  9. ^ "Simple synthesis of lead halide perovskite quantum dots". Sci-FunHub. 2017-04-09. Retrieved 2019-07-20.
  10. ^ Maksym Kovalenko (award ceremony video). Rössler Prize. 2019. Retrieved 2020-01-07.
  11. ^ "Quantum-emitting answer might lie in the solution". phys.org. November 2017. Retrieved 2019-11-26.
  12. ^ "Perovskites for optoelectronics". Nature. 26 September 2019.
  13. ^ Service, Robert F. (2019-06-07). "Perovskite LEDs begin to shine". Science. 364 (6444): 918. Bibcode:2019Sci...364..918S. doi:10.1126/science.364.6444.918. ISSN 0036-8075. PMID 31171673. S2CID 174813096.
  14. ^ Service, Robert (2019). "LEDs created from wonder material could revolutionize lighting and displays". Science. doi:10.1126/science.aay2755. S2CID 241024767.
  15. ^ Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; et al. (22 June 2017). "Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size". ACS Nano. 11 (7): 6586–6593. doi:10.1021/acsnano.6b07617. PMID 28587467.
  16. ^ Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L.; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A.; et al. (23 March 2017). "Preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices". ACS Nano. 11 (4): 3957–3964. doi:10.1021/acsnano.7b00404. PMID 28332818.
  17. ^ Liu, Peizhao; Chen, Wei; Wang, Weigao; Xu, Bing; Wu, Dan; Hao, Junjie; et al. (13 June 2017). "Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance". Chemistry of Materials. 29 (12): 5168–5173. doi:10.1021/acs.chemmater.7b00692.
  18. ^ a b Song, Jizhong; Li, Jianhai; Li, Xiaoming; Xu, Leimeng; Dong, Yuhui; Zeng, Haibo (November 2015). "Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX)". Advanced Materials. 27 (44): 7162–7167. Bibcode:2015AdM....27.7162S. doi:10.1002/adma.201502567. PMID 26444873. S2CID 35511467.
  19. ^ a b Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; et al. (20 August 2015). "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites". Nature Communications. 6: 8056. Bibcode:2015NatCo...6.8056Y. doi:10.1038/ncomms9056. PMC 4560790. PMID 26290056.
  20. ^ Peidong Yang; Fu, Anthony (June 2015). "Organic–inorganic perovskites: Lower threshold for nanowire lasers". Nature Materials. 14 (6): 557–558. Bibcode:2015NatMa..14..557F. doi:10.1038/nmat4291. ISSN 1476-4660. PMID 25990907.
  21. ^ "Researchers break bandwidth record for data communication using laser-based visible light". phys.org. Retrieved 2019-11-26.
  22. ^ Chen, Qiushui; Wu, Jing; Ou, Xiangyu; Huang, Bolong; Almutlaq, Jawaher; Zhumekenov, Ayan A.; et al. (September 2018). "All-inorganic perovskite nanocrystal scintillators". Nature. 561 (7721): 88–93. Bibcode:2018Natur.561...88C. doi:10.1038/s41586-018-0451-1. ISSN 0028-0836. PMID 30150772. S2CID 52096794.
  23. ^ Graham, Eleanor; Gooding, Diana; Gruszko, Julieta; Grant, Christopher; Naranjo, Brian; Winslow, Lindley (2019-07-23). "Light yield of Perovskite nanocrystal-doped liquid scintillator". Journal of Instrumentation. 14 (11): 11024. arXiv:1908.03564. Bibcode:2019JInst..14P1024G. doi:10.1088/1748-0221/14/11/P11024. S2CID 51814879.
  24. ^ Zhang, Yuhai; Sun, Ruijia; Ou, Xiangyu; Fu, Kaifang; Chen, Qiushui; Ding, Yuchong; et al. (2019-02-26). "Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens". ACS Nano. 13 (2): 2520–2525. doi:10.1021/acsnano.8b09484. hdl:10754/631023. ISSN 1936-0851. PMID 30721023.
  25. ^ Guo, Yunlong; Shoyama, Kazutaka; Sato, Wataru; Nakamura, Eiichi (2016). "Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells". Advanced Energy Materials. 6 (6): 1502317. Bibcode:2016AdEnM...602317G. doi:10.1002/aenm.201502317. ISSN 1614-6840.
  26. ^ Akkerman, Quinten A.; Gandini, Marina; Di Stasio, Francesco; Rastogi, Prachi; Palazon, Francisco; Bertoni, Giovanni; et al. (2016-12-22). "Strongly emissive perovskite nanocrystal inks for high-voltage solar cells". Nature Energy. 2 (2): 16194. Bibcode:2016NatEn...216194A. doi:10.1038/nenergy.2016.194. ISSN 2058-7546. S2CID 136250330.
  27. ^ Swarnkar, A.; Marshall, A.R.; Sanehira, E.M.; Chernomordik, B.D.; Moore, D.T.; Christians, J.A.; et al. (2016-10-07). "Quantum dot-induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics". Science. 354 (6308): 92–95. doi:10.1126/science.aag2700. ISSN 0036-8075. PMID 27846497.
  28. ^ Cottam, Nathan D; Zhang, Chengxi; Turyanska, Lyudmila; Eaves, Laurence; Kudrynskyi, Zakhar; Vdovin, Evgenii E.; et al. (2019-12-24). "Defect-assisted high photoconductive UV–visible gain in perovskite-decorated graphene transistors". ACS Applied Electronic Materials. 2: 147–154. doi:10.1021/acsaelm.9b00664. ISSN 2637-6113.
  29. ^ Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V. (9 November 2016). "Intriguing Optoelectronic Properties of Metal Halide Perovskites". Chemical Reviews. 116 (21): 12956–13008. doi:10.1021/acs.chemrev.6b00136. PMID 27327168.
  30. ^ a b Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; et al. (January 2018). "Bright triplet excitons in caesium lead halide perovskites". Nature. 553 (7687): 189–193. arXiv:1707.03071. Bibcode:2018Natur.553..189B. doi:10.1038/nature25147. ISSN 0028-0836. PMID 29323292. S2CID 1577411.
  31. ^ a b Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; et al. (29 January 2015). "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals". Science. 347 (6221): 519–522. Bibcode:2015Sci...347..519S. doi:10.1126/science.aaa2725. hdl:10754/564024. PMID 25635092. S2CID 206633609.
  32. ^ Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. (29 January 2015). "Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals". Science. 347 (6225): 967–970. Bibcode:2015Sci...347..967D. doi:10.1126/science.aaa5760. PMID 25636799.
  33. ^ Fang, Hong-Hua; Raissa, Raissa; Abdu-Aguye, Mustapha; Adjokatse, Sampson; Blake, Graeme R.; Even, Jacky; Loi, Maria Antonietta (April 2015). "Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystals" (PDF). Advanced Functional Materials. 25 (16): 2378–2385. doi:10.1002/adfm.201404421. S2CID 98069226.
  34. ^ Tilchin, Jenya; Dirin, Dmitry N.; Maikov, Georgy I.; Sashchiuk, Aldona; Kovalenko, Maksym V.; Lifshitz, Efrat (28 June 2016). "Hydrogen-like Wannier–Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite". ACS Nano. 10 (6): 6363–6371. doi:10.1021/acsnano.6b02734. PMID 27249335.
  35. ^ Zhumekenov, Ayan A.; Saidaminov, Makhsud I.; Haque, Md Azimul; Alarousu, Erkki; Sarmah, Smritakshi Phukan; Murali, Banavoth; et al. (8 July 2016). "Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length". ACS Energy Letters. 1 (1): 32–37. doi:10.1021/acsenergylett.6b00002.
  36. ^ a b Stoumpos, Constantinos C.; Malliakas, Christos D.; Peters, John A.; Liu, Zhifu; Sebastian, Maria; Im, Jino; et al. (3 July 2013). "Crystal Growth of the Perovskite Semiconductor CsPbBr: A New Material for High-Energy Radiation Detection". Crystal Growth & Design. 13 (7): 2722–2727. doi:10.1021/cg400645t.
  37. ^ Papagiorgis, Paris; Protesescu, Loredana; Kovalenko, Maksym V.; Othonos, Andreas; Itskos, Grigorios (24 May 2017). "Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals". The Journal of Physical Chemistry C. 121 (22): 12434–12440. doi:10.1021/acs.jpcc.7b02308.
  38. ^ Dirin, Dmitry N.; Cherniukh, Ihor; Yakunin, Sergii; Shynkarenko, Yevhen; Kovalenko, Maksym V. (13 December 2016). "Solution-Grown CsPbBr Perovskite Single Crystals for Photon Detection". Chemistry of Materials. 28 (23): 8470–8474. doi:10.1021/acs.chemmater.6b04298. PMC 5805401. PMID 29430079.
  39. ^ Song, Jizhong; Cui, Qingzhi; Li, Jianhai; Xu, Jiayue; Wang, Yue; Xu, Leimeng; et al. (June 2017). "Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High-Performance Visible-Infrared Dual-Modal Photodetectors". Advanced Optical Materials. 5 (12): 1700157. doi:10.1002/adom.201700157.
  40. ^ Kang, Jun; Wang, Lin-Wang (19 January 2017). "High Defect Tolerance in Lead Halide Perovskite CsPbBr". The Journal of Physical Chemistry Letters. 8 (2): 489–493. doi:10.1021/acs.jpclett.6b02800. OSTI 1483838. PMID 28071911.
  41. ^ a b c d Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H.; et al. (10 June 2015). "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut". Nano Letters. 15 (6): 3692–3696. Bibcode:2015NanoL..15.3692P. doi:10.1021/nl5048779. PMC 4462997. PMID 25633588.
  42. ^ Brandt, Riley E.; Stevanović, Vladan; Ginley, David S.; Buonassisi, Tonio (20 May 2015). "Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites". MRS Communications. 5 (2): 265–275. arXiv:1504.02144. Bibcode:2015arXiv150402144B. doi:10.1557/mrc.2015.26. S2CID 54175570.
  43. ^ ten Brinck, Stephanie; Infante, Ivan (9 December 2016). "Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals". ACS Energy Letters. 1 (6): 1266–1272. doi:10.1021/acsenergylett.6b00595.
  44. ^ Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; et al. (2018). "Bright triplet excitons in caesium lead halide perovskites". Nature. 553 (7687): 189–193. arXiv:1707.03071. Bibcode:2018Natur.553..189B. doi:10.1038/nature25147. PMID 29323292. S2CID 1577411.
  45. ^ Bokdam, Menno; Sander, Tobias; Stroppa, Alessandro; Picozzi, Silvia; Sarma, D. D.; Franchini, Cesare; Kresse, Georg (28 June 2016). "Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites". Scientific Reports. 6 (1): 28618. arXiv:1512.05593. Bibcode:2016NatSR...628618B. doi:10.1038/srep28618. PMC 4923852. PMID 27350083.
  46. ^ Pan, Y.Y.; Su, Y.H.; Hsu, C.H.; Huang, L.W.; Dou, K.P.; Kaun, C.C. (12 September 2016). "First-Principles Study on Electronic Structures of FAPbX3 (X = Cl, Br, I) Hybrid Perovskites". Journal of Advances in Nanomaterials. 1 (1). doi:10.22606/jan.2016.11004.
  47. ^ Nedelcu, Georgian; Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.; Grotevent, Matthias J.; Kovalenko, Maksym V. (2015-08-12). "Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, I)". Nano Letters. 15 (8): 5635–5640. Bibcode:2015NanoL..15.5635N. doi:10.1021/acs.nanolett.5b02404. ISSN 1530-6984. PMC 4538456. PMID 26207728.
  48. ^ Akkerman, Quinten A.; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato (2015-08-19). "Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions". Journal of the American Chemical Society. 137 (32): 10276–10281. doi:10.1021/jacs.5b05602. ISSN 0002-7863. PMC 4543997. PMID 26214734.
  49. ^ Murray, C. B.; Norris, D. J.; Bawendi, M. G. (September 1993). "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites". Journal of the American Chemical Society. 115 (19): 8706–8715. doi:10.1021/ja00072a025.
  50. ^ Hines, M.A.; Scholes, G.D. (4 November 2003). "Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution". Advanced Materials. 15 (21): 1844–1849. Bibcode:2003AdM....15.1844H. doi:10.1002/adma.200305395. S2CID 96010742.
  51. ^ Spanopoulos, Ioannis; Ke, Weijun; Stoumpos, Constantinos C.; Schueller, Emily C.; Kontsevoi, Oleg Y.; Seshadri, Ram; Kanatzidis, Mercouri G. (2018-05-02). "Unraveling the Chemical Nature of the 3D "Hollow" Hybrid Halide Perovskites". Journal of the American Chemical Society. 140 (17): 5728–5742. doi:10.1021/jacs.8b01034. ISSN 0002-7863. OSTI 1599736. PMID 29617127.
  52. ^ Levchuk, Ievgen; Osvet, Andres; Tang, Xiaofeng; Brandl, Marco; Perea, José Darío; Hoegl, Florian; et al. (11 April 2017). "Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX (X = Cl, Br, I) colloidal nanocrystals". Nano Letters. 17 (5): 2765–2770. Bibcode:2017NanoL..17.2765L. doi:10.1021/acs.nanolett.6b04781. PMID 28388067.
  53. ^ Maes, Jorick; Balcaen, Lieve; Drijvers, Emile; Zhao, Qiang; De Roo, Jonathan; Vantomme, André; et al. (2018-06-07). "Light Absorption Coefficient of CsPbBr 3 Perovskite Nanocrystals". The Journal of Physical Chemistry Letters. 9 (11): 3093–3097. doi:10.1021/acs.jpclett.8b01065. ISSN 1948-7185. PMID 29790351.
  54. ^ a b De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; et al. (2016-02-23). "Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals". ACS Nano. 10 (2): 2071–2081. doi:10.1021/acsnano.5b06295. hdl:1854/LU-7208295. ISSN 1936-0851. PMID 26786064. S2CID 206697106.
  55. ^ Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yin, Chunyang; Lv, Bihu; Zhang, Chunfeng; et al. (2015-12-22). "Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters". ACS Nano. 9 (12): 12410–12416. arXiv:1509.02666. doi:10.1021/acsnano.5b05769. ISSN 1936-0851. PMID 26522082.
  56. ^ Fu, Ming; Tamarat, Philippe; Huang, He; Even, Jacky; Rogach, Andrey L.; Lounis, Brahim (2017-05-10). "Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy". Nano Letters. 17 (5): 2895–2901. Bibcode:2017NanoL..17.2895F. doi:10.1021/acs.nanolett.7b00064. hdl:10044/1/63503. ISSN 1530-6984. PMID 28240910.
  57. ^ Isarov, Maya; Tan, Liang Z.; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Rappe, Andrew M.; Lifshitz, Efrat (2017-08-09). "Rashba Effect in a Single Colloidal CsPbBr3 Perovskite Nanocrystal Detected by Magneto-Optical Measurements". Nano Letters. 17 (8): 5020–5026. Bibcode:2017NanoL..17.5020I. doi:10.1021/acs.nanolett.7b02248. ISSN 1530-6984. PMID 28657325.
  58. ^ Rainò, Gabriele; Nedelcu, Georgian; Protesescu, Loredana; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Mahrt, Rainer F.; Stöferle, Thilo (23 February 2016). "Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure". ACS Nano. 10 (2): 2485–2490. doi:10.1021/acsnano.5b07328. PMC 4768330. PMID 26771336.
  59. ^ Hu, Fengrui; Yin, Chunyang; Zhang, Huichao; Sun, Chun; Yu, William W.; Zhang, Chunfeng; et al. (2016-10-12). "Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion". Nano Letters. 16 (10): 6425–6430. arXiv:1605.00200. Bibcode:2016NanoL..16.6425H. doi:10.1021/acs.nanolett.6b02874. ISSN 1530-6984. PMID 27689439. S2CID 23987066.
  60. ^ Ramade, Julien; Andriambariarijaona, Léon Marcel; Steinmetz, Violette; Goubet, Nicolas; Legrand, Laurent; Barisien, Thierry; et al. (2018). "Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr 3 single nanocrystals". Nanoscale. 10 (14): 6393–6401. doi:10.1039/C7NR09334A. ISSN 2040-3364. PMID 29560979.
  61. ^ Ben Aich, R.; Saïdi, I.; Ben Radhia, S.; Boujdaria, K.; Barisien, T.; Legrand, L.; et al. (2019-03-18). "Bright-Exciton Splittings in Inorganic Cesium Lead Halide Perovskite Nanocrystals". Physical Review Applied. 11 (3): 034042. Bibcode:2019PhRvP..11c4042B. doi:10.1103/PhysRevApplied.11.034042. S2CID 140045988.
  62. ^ Ben Aich, R.; Ben Radhia, S.; Boujdaria, K.; Chamarro, M.; Testelin, C. (2020-02-06). "Multiband k·p Model for Tetragonal Crystals: Application to Hybrid Halide Perovskite Nanocrystals" (PDF). The Journal of Physical Chemistry Letters. 11 (3): 808–817. doi:10.1021/acs.jpclett.9b02179. PMID 31931571. S2CID 210191590.
  63. ^ Etienne, Thibaud; Mosconi, Edoardo; De Angelis, Filippo (5 May 2016). "Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?". The Journal of Physical Chemistry Letters. 7 (9): 1638–1645. doi:10.1021/acs.jpclett.6b00564. PMID 27062910.
  64. ^ Isarov, Maya; Tan, Liang Z.; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Rappe, Andrew M.; Lifshitz, Efrat (5 July 2017). "Rashba Effect in a Single Colloidal CsPbBr Perovskite Nanocrystal Detected by Magneto-Optical Measurements". Nano Letters. 17 (8): 5020–5026. Bibcode:2017NanoL..17.5020I. doi:10.1021/acs.nanolett.7b02248. PMID 28657325.
  65. ^ Tamarat, Philippe; Bodnarchuk, Maryna I.; Trebbia, Jean-Baptiste; Erni, Rolf; Kovalenko, Maksym V.; Even, Jacky; Lounis, Brahim (July 2019). "The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state". Nature Materials. 18 (7): 717–724. Bibcode:2019NatMa..18..717T. doi:10.1038/s41563-019-0364-x. ISSN 1476-1122. PMID 31086320. S2CID 155090783.
  66. ^ Meijerink, Andries; Rabouw, Freddy T. (July 2019). "Shedding light on dark excitons". Nature Materials. 18 (7): 660–661. Bibcode:2019NatMa..18..660M. doi:10.1038/s41563-019-0376-6. ISSN 1476-1122. PMID 31086321.
  67. ^ Becker, Michael A.; Scarpelli, Lorenzo; Nedelcu, Georgian; Rainò, Gabriele; Masia, Francesco; Borri, Paola; et al. (2018-12-12). "Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr 2 Cl Perovskite Nanocrystals". Nano Letters. 18 (12): 7546–7551. arXiv:1808.06366. Bibcode:2018NanoL..18.7546B. doi:10.1021/acs.nanolett.8b03027. ISSN 1530-6984. PMID 30407011.
  68. ^ Utzat, Hendrik; Sun, Weiwei; Kaplan, Alexander E. K.; Krieg, Franziska; Ginterseder, Matthias; Spokoyny, Boris; et al. (2019-03-08). "Coherent single-photon emission from colloidal lead halide perovskite quantum dots". Science. 363 (6431): 1068–1072. arXiv:1812.11923. Bibcode:2019Sci...363.1068U. doi:10.1126/science.aau7392. ISSN 0036-8075. PMID 30792359. S2CID 72336088.
  69. ^ Lv, Yan; Yin, Chunyang; Zhang, Chunfeng; Yu, William W.; Wang, Xiaoyong; Zhang, Yu; Xiao, Min (2019-07-10). "Quantum Interference in a Single Perovskite Nanocrystal". Nano Letters. 19 (7): 4442–4447. arXiv:1901.01650. Bibcode:2019NanoL..19.4442L. doi:10.1021/acs.nanolett.9b01237. ISSN 1530-6984. PMID 31185175. S2CID 119198892.
  70. ^ Tong, Yu; Yao, En-Ping; Manzi, Aurora; Bladt, Eva; Wang, Kun; Döblinger, Markus; et al. (June 5, 2018). "Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap". Advanced Materials. 30 (29): 1801117. Bibcode:2018AdM....3001117T. doi:10.1002/adma.201801117. hdl:10067/1524130151162165141. PMID 29870579. S2CID 46949062.
  71. ^ van der Burgt, Julia S.; Geuchies, Jaco J.; van der Meer, Berend; Vanrompay, Hans; Zanaga, Daniele; Zhang, Yang; et al. (2018-07-12). "Cuboidal Supraparticles Self-Assembled from Cubic CsPbBr 3 Perovskite Nanocrystals". The Journal of Physical Chemistry C. 122 (27): 15706–15712. doi:10.1021/acs.jpcc.8b02699. ISSN 1932-7447. PMC 6143281. PMID 30245760.
  72. ^ Baranov, Dmitry; Toso, Stefano; Imran, Muhammad; Manna, Liberato (2019-02-07). "Investigation into the Photoluminescence Red Shift in Cesium Lead Bromide Nanocrystal Superlattices". The Journal of Physical Chemistry Letters. 10 (3): 655–660. doi:10.1021/acs.jpclett.9b00178. ISSN 1948-7185. PMC 6477804. PMID 30676762.
  73. ^ Kovalenko, Maksym V.; Bodnarchuk, Maryna I. (2017-08-09). "Lead Halide Perovskite Nanocrystals: From Discovery to Self-assembly and Applications". CHIMIA International Journal for Chemistry. 71 (7): 461–470. doi:10.2533/chimia.2017.461. ISSN 0009-4293. PMID 28779769. S2CID 34047021.
  74. ^ Imran, Muhammad; Ijaz, Palvasha; Baranov, Dmitry; Goldoni, Luca; Petralanda, Urko; Akkerman, Quinten; et al. (2018-12-12). "Shape-Pure, Nearly Monodispersed CsPbBr 3 Nanocubes Prepared Using Secondary Aliphatic Amines". Nano Letters. 18 (12): 7822–7831. Bibcode:2018NanoL..18.7822I. doi:10.1021/acs.nanolett.8b03598. ISSN 1530-6984. PMC 6428374. PMID 30383965.
  75. ^ Brennan, Michael C.; Toso, Stefano; Pavlovetc, Ilia M.; Zhukovskyi, Maksym; Marras, Sergio; Kuno, Masaru; et al. (2020-05-08). "Superlattices are Greener on the Other Side: How Light Transforms Self-Assembled Mixed Halide Perovskite Nanocrystals". ACS Energy Letters. 5 (5): 1465–1473. doi:10.1021/acsenergylett.0c00630. ISSN 2380-8195.
  76. ^ Toso, Stefano; Baranov, Dmitry; Giannini, Cinzia; Marras, Sergio; Manna, Liberato (2019). "Wide-Angle X-ray Diffraction Evidence of Structural Coherence in CsPbBr3 Nanocrystal Superlattices". ACS Materials Letters. 1 (2): 272–276. doi:10.1021/acsmaterialslett.9b00217. PMC 7497715. PMID 32954357.
  77. ^ Community, Nature Research Device and Materials Engineering (2018-11-15). "Superfluorescence from Nanocrystal Superlattices: A Serendipitous Discovery". Nature Research Device and Materials Engineering Community. Retrieved 2019-07-25.
  78. ^ Rainò, Gabriele; Becker, Michael A.; Bodnarchuk, Maryna I.; Mahrt, Rainer F.; Kovalenko, Maksym V.; Stöferle, Thilo (November 2018). "Superfluorescence from lead halide perovskite quantum dot superlattices". Nature. 563 (7733): 671–675. arXiv:1804.01873. Bibcode:2018Natur.563..671R. doi:10.1038/s41586-018-0683-0. ISSN 0028-0836. PMID 30405237. S2CID 53213886.
  79. ^ a b Schmidt, Luciana C.; Pertegás, Antonio; González-Carrero, Soranyel; Malinkiewicz, Olga; Agouram, Said; Mínguez Espallargas, Guillermo; et al. (22 January 2014). "Nontemplate Synthesis of CH NH PbBr Perovskite Nanoparticles". Journal of the American Chemical Society. 136 (3): 850–853. doi:10.1021/ja4109209. hdl:11336/31517. PMID 24387158.
  80. ^ He, Xianghong; Qiu, Yongcai; Yang, Shihe (22 June 2017). "Fully-Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials". Advanced Materials. 29 (32): 1700775. Bibcode:2017AdM....2900775H. doi:10.1002/adma.201700775. PMID 28639413. S2CID 205279345.
  81. ^ Dey, Amrita; Ye, Junzhi; De, Apurba; Debroye, Elke; Ha, Seung Kyun; Bladt, Eva; et al. (2021-07-27). "State of the Art and Prospects for Halide Perovskite Nanocrystals". ACS Nano. 15 (7): 10775–10981. doi:10.1021/acsnano.0c08903. ISSN 1936-0851. PMC 8482768. PMID 34137264.
  82. ^ a b c Protesescu, Loredana; Yakunin, Sergii; Kumar, Sudhir; Bär, Janine; Bertolotti, Federica; Masciocchi, Norberto; et al. (3 March 2017). "Dismantling the "Red Wall" of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals". ACS Nano. 11 (3): 3119–3134. doi:10.1021/acsnano.7b00116. PMC 5800405. PMID 28231432.
  83. ^ a b c Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.; Bertolotti, Federica; Masciocchi, Norberto; Guagliardi, Antonietta; Kovalenko, Maksym V. (2 November 2016). "Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence". Journal of the American Chemical Society. 138 (43): 14202–14205. doi:10.1021/jacs.6b08900. PMC 5799874. PMID 27737545.
  84. ^ a b Krieg, Franziska; Ochsenbein, Stefan T.; Yakunin, Sergii; ten Brinck, Stephanie; Aellen, Philipp; Süess, Adrian; et al. (2018-03-09). "Colloidal CsPbX 3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability". ACS Energy Letters. 3 (3): 641–646. doi:10.1021/acsenergylett.8b00035. ISSN 2380-8195. PMC 5848145. PMID 29552638.
  85. ^ Bodnarchuk, Maryna I.; Boehme, Simon C.; ten Brinck, Stephanie; Bernasconi, Caterina; Shynkarenko, Yevhen; Krieg, Franziska; et al. (2019-01-11). "Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals". ACS Energy Letters. 4 (1): 63–74. doi:10.1021/acsenergylett.8b01669. ISSN 2380-8195. PMC 6333230. PMID 30662955.
  86. ^ Krieg, Franziska; Ong, Quy K.; Burian, Max; Raino, Gabriele; Naumenko, Denys; Amenitsch, Heinz; et al. (2019-11-25). "Stable Ultra-Concentrated and Ultra-Dilute Colloids of CsPbX3 (X=Cl, Br) Nanocrystals using Natural Lecithin as a Capping Ligand". Journal of the American Chemical Society. 141 (50): 19839–19849. doi:10.1021/jacs.9b09969. ISSN 0002-7863. PMC 6923794. PMID 31763836.
  87. ^ Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; et al. (28 April 2015). "Brightly Luminescent and Color-Tunable Colloidal CH NH PbX (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology". ACS Nano. 9 (4): 4533–4542. doi:10.1021/acsnano.5b01154. PMID 25824283.
  88. ^ Minh, Duong Nguyen; Kim, Juwon; Hyon, Jinho; Sim, Jae Hyun; Sowlih, Haneen H.; Seo, Chunhee; et al. (26 June 2017). "Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals". Chemistry of Materials. 29 (13): 5713–5719. doi:10.1021/acs.chemmater.7b01705.
  89. ^ Lignos, Ioannis; Stavrakis, Stavros; Nedelcu, Georgian; Protesescu, Loredana; deMello, Andrew J.; Kovalenko, Maksym V. (9 March 2016). "Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping". Nano Letters. 16 (3): 1869–1877. Bibcode:2016NanoL..16.1869L. doi:10.1021/acs.nanolett.5b04981. PMID 26836149.
  90. ^ "Nanocrystal 'factory' could revolutionize quantum dot manufacturing". ScienceDaily. Retrieved 2019-11-26.
  91. ^ Protesescu, Loredana; Yakunin, Sergii; Nazarenko, Olga; Dirin, Dmitry N.; Kovalenko, Maksym V. (2018-03-23). "Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling". ACS Applied Nano Materials. 1 (3): 1300–1308. doi:10.1021/acsanm.8b00038. PMC 5999230. PMID 29911683.
  92. ^ MIZUSAKI, J; ARAI, K; FUEKI, K (November 1983). "Ionic conduction of the perovskite-type halides". Solid State Ionics. 11 (3): 203–211. doi:10.1016/0167-2738(83)90025-5.
  93. ^ Nedelcu, Georgian; Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.; Grotevent, Matthias J.; Kovalenko, Maksym V. (12 August 2015). "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX , X = Cl, Br, I)". Nano Letters. 15 (8): 5635–5640. Bibcode:2015NanoL..15.5635N. doi:10.1021/acs.nanolett.5b02404. PMC 4538456. PMID 26207728.
  94. ^ a b Akkerman, Quinten A.; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato (19 August 2015). "Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions". Journal of the American Chemical Society. 137 (32): 10276–10281. doi:10.1021/jacs.5b05602. PMC 4543997. PMID 26214734.
  95. ^ Guhrenz, Chris; Benad, Albrecht; Ziegler, Christoph; Haubold, Danny; Gaponik, Nikolai; Eychmüller, Alexander (27 December 2016). "Solid-State Anion Exchange Reactions for Color Tuning of CsPbX Perovskite Nanocrystals". Chemistry of Materials. 28 (24): 9033–9040. doi:10.1021/acs.chemmater.6b03980.
  96. ^ Wang, Qian; Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Gao, Zhenfei; Li, Yongfang; Liu, Shengzhong Frank (June 2017). "Energy-Down-Shift CsPbCl :Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells". ACS Energy Letters. 2 (7): 1479–1486. doi:10.1021/acsenergylett.7b00375.
  97. ^ Das Adhikari, Samrat; Dutta, Sumit K.; Dutta, Anirban; Guria, Amit K.; Pradhan, Narayan (17 July 2017). "Chemically Tailoring the Dopant Emission in Manganese-Doped CsPbCl Perovskite Nanocrystals". Angewandte Chemie. 129 (30): 8872–8876. Bibcode:2017AngCh.129.8872D. doi:10.1002/ange.201703863.
  98. ^ Mir, Wasim J.; Jagadeeswararao, Metikoti; Das, Shyamashis; Nag, Angshuman (2017-03-10). "Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets". ACS Energy Letters. 2 (3): 537–543. doi:10.1021/acsenergylett.6b00741. ISSN 2380-8195.
  99. ^ van der Stam, Ward; Geuchies, Jaco J.; Altantzis, Thomas; van den Bos, Karel H. W.; Meeldijk, Johannes D.; Van Aert, Sandra; et al. (10 March 2017). "Highly Emissive Divalent-Ion-Doped Colloidal CsPb M Br Perovskite Nanocrystals through Cation Exchange". Journal of the American Chemical Society. 139 (11): 4087–4097. doi:10.1021/jacs.6b13079. PMC 5364419. PMID 28260380.
  100. ^ Roman, Benjamin J.; Otto, Joseph; Galik, Christopher; Downing, Rachel; Sheldon, Matthew (2 August 2017). "Au Exchange or Au Deposition: Dual Reaction Pathways in Au–CsPbBr Heterostructure Nanoparticles". Nano Letters. 17 (9): 5561–5566. Bibcode:2017NanoL..17.5561R. doi:10.1021/acs.nanolett.7b02355. PMID 28759245.
  101. ^ Schmoldt A, Benthe HF, Haberland G (1975). "Digitoxin metabolism by rat liver microsomes" (PDF). Biochem Pharmacol. 24 (17): 1639–1641. doi:10.1016/0006-2952(75)90094-5. PMID 10.
  102. ^ Weidman, Mark C.; Goodman, Aaron J.; Tisdale, William A. (2017-06-27). "Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials". Chemistry of Materials. 29 (12): 5019–5030. doi:10.1021/acs.chemmater.7b01384. ISSN 0897-4756.
  103. ^ Zhang, Dandan; Eaton, Samuel W.; Yu, Yi; Dou, Letian; Yang, Peidong (2015-07-29). "Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires". Journal of the American Chemical Society. 137 (29): 9230–9233. doi:10.1021/jacs.5b05404. ISSN 0002-7863. OSTI 1832456. PMID 26181343.
  104. ^ Darmawan, Yoshua Albert; Yamauchi, Mitsuaki; Masuo, Sadahiro (2020-08-27). "In Situ Observation of a Photodegradation-Induced Blueshift in Perovskite Nanocrystals Using Single-Particle Spectroscopy Combined with Atomic Force Microscopy". The Journal of Physical Chemistry C. 124 (34): 18770–18776. doi:10.1021/acs.jpcc.0c04923. ISSN 1932-7447. S2CID 225475918.
  105. ^ Igarashi, Hina; Yamauchi, Mitsuaki; Masuo, Sadahiro (2023-03-09). "Correlation between Single-Photon Emission and Size of Cesium Lead Bromide Perovskite Nanocrystals". The Journal of Physical Chemistry Letters. 14 (9): 2441–2447. doi:10.1021/acs.jpclett.3c00059. ISSN 1948-7185. PMID 36862129. S2CID 257281124.
  106. ^ Steinmetz, Violette; Ramade, Julien; Legrand, Laurent; Barisien, Thierry; Bernardot, Frédérick; Lhuillier, Emmanuel; et al. (2020). "Anisotropic shape of CsPbBr 3 colloidal nanocrystals: from 1D to 2D confinement effects". Nanoscale. 12 (36): 18978–18986. doi:10.1039/D0NR03901B. ISSN 2040-3364. PMID 32915178. S2CID 221619141.
  107. ^ Akkerman, Quinten A.; Motti, Silvia Genaro; Srimath Kandada, Ajay Ram; Mosconi, Edoardo; D'Innocenzo, Valerio; Bertoni, Giovanni; et al. (27 January 2016). "Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control". Journal of the American Chemical Society. 138 (3): 1010–1016. doi:10.1021/jacs.5b12124. PMC 4731826. PMID 26726764.
  108. ^ Imran, Muhammad; Di Stasio, Francesco; Dang, Zhiya; Canale, Claudio; Khan, Ali Hossain; Shamsi, Javad; et al. (27 September 2016). "Colloidal Synthesis of Strongly Fluorescent CsPbBr Nanowires with Width Tunable down to the Quantum Confinement Regime". Chemistry of Materials. 28 (18): 6450–6454. doi:10.1021/acs.chemmater.6b03081. PMC 5716441. PMID 29225419.
  109. ^ Huang, He; Susha, Andrei S.; Kershaw, Stephen V.; Hung, Tak Fu; Rogach, Andrey L. (September 2015). "Control of Emission Color of High Quantum Yield CH NH PbBr Perovskite Quantum Dots by Precipitation Temperature". Advanced Science. 2 (9): 1500194. doi:10.1002/advs.201500194. PMC 5115379. PMID 27980980.
  110. ^ a b Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V. (2016). "Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals". Nanoscale. 8 (12): 6278–6283. Bibcode:2016Nanos...8.6278V. doi:10.1039/C5NR06890H. hdl:20.500.11850/108502. PMID 26645348.
  111. ^ Goldschmidt, V. M. (May 21, 1926). "Die Gesetze der Krystallochemie". Naturwissenschaften. 14 (21): 477–485. Bibcode:1926NW.....14..477G. doi:10.1007/BF01507527. S2CID 33792511.
  112. ^ a b Stoumpos, Constantinos C.; Kanatzidis, Mercouri G. (20 October 2015). "The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors". Accounts of Chemical Research. 48 (10): 2791–2802. doi:10.1021/acs.accounts.5b00229. PMID 26350149.
  113. ^ Cao, Duyen H.; Stoumpos, Constantinos C.; Farha, Omar K.; Hupp, Joseph T.; Kanatzidis, Mercouri G. (24 June 2015). "2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications". Journal of the American Chemical Society. 137 (24): 7843–7850. doi:10.1021/jacs.5b03796. PMID 26020457.
  114. ^ Onoda-Yamamuro, N.; Yamamuro, O.; Matsuo, T.; Suga, H. (1992). "p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals". J. Phys. Chem. Solids. 53 (2): 277–287. Bibcode:1992JPCS...53..277O. doi:10.1016/0022-3697(92)90056-J.
  115. ^ Lee, Y.; Mitzi, D.B.; Barnes, P.W.; Vogt, T. (2003). "Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites". Phys. Rev. B. 68 (2): 020103. Bibcode:2003PhRvB..68b0103L. doi:10.1103/PhysRevB.68.020103.
  116. ^ Woodward, P. (1997). "Octahedral Tilting in Perovskites. I. Geometrical Considerations". Acta Crystallogr. B. 53 (1): 32–43. Bibcode:1997AcCrB..53...32W. doi:10.1107/S0108768196010713.
  117. ^ Howard, C.J.; Stokes, H.T. (1998). "Group-Theoretical Analysis of Octahedral Tilting in Perovskites". Acta Crystallogr. B. 54 (6): 782–789. Bibcode:1998AcCrB..54..782H. doi:10.1107/S0108768198004200.
  118. ^ Trots, D.M.; Myagkota, S.V. (2008). "High-temperature structural evolution of caesium and rubidium triiodoplumbates" (PDF). J. Phys. Chem. Solids. 69 (10): 2520–2526. Bibcode:2008JPCS...69.2520T. doi:10.1016/j.jpcs.2008.05.007.
  119. ^ Chung, I.; Song, J. -H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; et al. (2012). "CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase Transitions". J. Am. Chem. Soc. 134 (20): 8579–8587. doi:10.1021/ja301539s. PMID 22578072.
  120. ^ Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.; Kanatzidis, Mercouri G. (4 June 2014). "Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells". Journal of the American Chemical Society. 136 (22): 8094–8099. doi:10.1021/ja5033259. PMID 24823301.
  121. ^ Ogomi, Yuhei; Morita, Atsushi; Tsukamoto, Syota; Saitho, Takahiro; Fujikawa, Naotaka; Shen, Qing; et al. (20 March 2014). "CH NH Sn Pb I Perovskite Solar Cells Covering up to 1060 nm". The Journal of Physical Chemistry Letters. 5 (6): 1004–1011. doi:10.1021/jz5002117. PMID 26270980.
  122. ^ Stoumpos, Constantinos C.; Kanatzidis, Mercouri G. (2015-10-20). "The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors". Accounts of Chemical Research. 48 (10): 2791–2802. doi:10.1021/acs.accounts.5b00229. ISSN 0001-4842. PMID 26350149.
  123. ^ Zhu, H.; Miyata, K.; Fu, Y.; Wang, J.; Joshi, P.P.; Niesner, D.; et al. (2016-09-23). "Screening in crystalline liquids protects energetic carriers in hybrid perovskites". Science. 353 (6306): 1409–1413. Bibcode:2016Sci...353.1409Z. doi:10.1126/science.aaf9570. ISSN 0036-8075. PMID 27708033.
  124. ^ Bertolotti, Federica; Protesescu, Loredana; Kovalenko, Maksym V.; Yakunin, Sergii; Cervellino, Antonio; Billinge, Simon J. L.; et al. (2017-04-25). "Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals". ACS Nano. 11 (4): 3819–3831. doi:10.1021/acsnano.7b00017. ISSN 1936-0851. PMC 5800404. PMID 28394579.
  125. ^ Darmawan, Yoshua Albert; Yamauchi, Mitsuaki; Masuo, Sadahiro (2020-08-27). "In Situ Observation of a Photodegradation-Induced Blueshift in Perovskite Nanocrystals Using Single-Particle Spectroscopy Combined with Atomic Force Microscopy". The Journal of Physical Chemistry C. 124 (34): 18770–18776. doi:10.1021/acs.jpcc.0c04923. ISSN 1932-7447. S2CID 225475918.
  126. ^ Bodnarchuk, Maryna I.; Boehme, Simon C.; ten Brinck, Stephanie; Bernasconi, Caterina; Shynkarenko, Yevhen; Krieg, Franziska; et al. (2019-01-11). "Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals". ACS Energy Letters. 4 (1): 63–74. doi:10.1021/acsenergylett.8b01669. ISSN 2380-8195. PMC 6333230. PMID 30662955.
  127. ^ Koscher, Brent A.; Nett, Zachary; Alivisatos, A. Paul (2019-10-22). "The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr 3 Nanocrystals for Reliably Accessing Near-Unity Emitters". ACS Nano. 13 (10): 11825–11833. doi:10.1021/acsnano.9b05782. ISSN 1936-0851. OSTI 1619131. PMID 31553569. S2CID 203441221.
  128. ^ Almeida, Guilherme; Infante, Ivan; Manna, Liberato (2019-05-31). "Resurfacing halide perovskite nanocrystals". Science. 364 (6443): 833–834. Bibcode:2019Sci...364..833A. doi:10.1126/science.aax5825. ISSN 0036-8075. PMID 31147510. S2CID 171093113.
  129. ^ Zhao, Xiaofei; Ng, Jun De Andrew; Friend, Richard H.; Tan, Zhi-Kuang (2018-10-17). "Opportunities and Challenges in Perovskite Light-Emitting Devices". ACS Photonics. 5 (10): 3866–3875. doi:10.1021/acsphotonics.8b00745. ISSN 2330-4022. S2CID 125745158.
  130. ^ Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; et al. (8 April 2015). "Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix". Nano Letters. 15 (4): 2640–2644. Bibcode:2015NanoL..15.2640L. doi:10.1021/acs.nanolett.5b00235. PMID 25710194.
  131. ^ Chiba, Takayuki; Hoshi, Keigo; Pu, Yong-Jin; Takeda, Yuya; Hayashi, Yukihiro; Ohisa, Satoru; et al. (16 May 2017). "High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment". ACS Applied Materials & Interfaces. 9 (21): 18054–18060. doi:10.1021/acsami.7b03382. PMID 28485139.
  132. ^ Zhang, Xiaoyu; Sun, Chun; Zhang, Yu; Wu, Hua; Ji, Changyin; Chuai, Yahui; et al. (17 November 2016). "Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices". The Journal of Physical Chemistry Letters. 7 (22): 4602–4610. doi:10.1021/acs.jpclett.6b02073. PMID 27758105.
  133. ^ Ochsenbein, Stefan T.; Krieg, Franziska; Shynkarenko, Yevhen; Rainò, Gabriele; Kovalenko, Maksym V. (2019-06-19). "Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals". ACS Applied Materials & Interfaces. 11 (24): 21655–21660. doi:10.1021/acsami.9b02472. ISSN 1944-8244. PMID 31117429. S2CID 162181731.
  134. ^ Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; et al. (17 April 2014). "High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors". The Journal of Physical Chemistry Letters. 5 (8): 1421–1426. doi:10.1021/jz5005285. PMID 26269988.
  135. ^ Xing, Guichuan; Mathews, Nripan; Lim, Swee Sien; Yantara, Natalia; Liu, Xinfeng; Sabba, Dharani; et al. (16 March 2014). "Low-temperature solution-processed wavelength-tunable perovskites for lasing". Nature Materials. 13 (5): 476–480. Bibcode:2014NatMa..13..476X. doi:10.1038/nmat3911. hdl:10356/79520. PMID 24633346. S2CID 23893738.
  136. ^ Wang, Yue; Li, Xiaoming; Song, Jizhong; Xiao, Lian; Zeng, Haibo; Sun, Handong (November 2015). "All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics". Advanced Materials. 27 (44): 7101–7108. Bibcode:2015AdM....27.7101W. doi:10.1002/adma.201503573. PMID 26448638. S2CID 5605105.
  137. ^ Tong, Yu; Bladt, Eva; Aygüler, Meltem F.; Manzi, Aurora; Milowska, Karolina Z.; Hintermayr, Verena A.; et al. (24 October 2016). "Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication". Angewandte Chemie International Edition. 55 (44): 13887–13892. doi:10.1002/anie.201605909. hdl:10067/1382150151162165141. PMID 27690323.
  138. ^ Zhu, Haiming; Fu, Yongping; Meng, Fei; Wu, Xiaoxi; Gong, Zizhou; Ding, Qi; et al. (13 April 2015). "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors". Nature Materials. 14 (6): 636–642. Bibcode:2015NatMa..14..636Z. doi:10.1038/nmat4271. PMID 25849532.
  139. ^ Pan, Jun; Sarmah, Smritakshi P.; Murali, Banavoth; Dursun, Ibrahim; Peng, Wei; Parida, Manas R.; et al. (17 December 2015). "Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission". The Journal of Physical Chemistry Letters. 6 (24): 5027–5033. doi:10.1021/acs.jpclett.5b02460. hdl:10754/596018. PMID 26624490.
  140. ^ Kobosko, Steven M.; DuBose, Jeffrey T.; Kamat, Prashant V. (2019-12-31). "Perovskite Photocatalysis. Methyl Viologen Induces Unusually Long-Lived Charge Carrier Separation in CsPbBr 3 Nanocrystals". ACS Energy Letters. 5: 221–223. doi:10.1021/acsenergylett.9b02573. ISSN 2380-8195.
  141. ^ Xu, Yang-Fan; Yang, Mu-Zi; Chen, Bai-Xue; Wang, Xu-Dong; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong (2017-04-26). "A CsPbBr 3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO 2 Reduction". Journal of the American Chemical Society. 139 (16): 5660–5663. doi:10.1021/jacs.7b00489. ISSN 0002-7863. PMID 28385017.
  142. ^ DuBose, Jeffrey T.; Kamat, Prashant V. (2019-10-17). "Probing Perovskite Photocatalysis. Interfacial Electron Transfer between CsPbBr 3 and Ferrocene Redox Couple". The Journal of Physical Chemistry Letters. 10 (20): 6074–6080. doi:10.1021/acs.jpclett.9b02294. ISSN 1948-7185. PMID 31539259. S2CID 202710649.
  143. ^ Yakunin, Sergii; Chaaban, Jana; Benin, Bogdan M.; Cherniukh, Ihor; Bernasconi, Caterina; Landuyt, Annelies; et al. (2021-02-12). "Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals". Nature Communications. 12 (1): 981. Bibcode:2021NatCo..12..981Y. doi:10.1038/s41467-021-21214-3. ISSN 2041-1723. PMC 7881120. PMID 33579913.
  144. ^ Liang, Jia; Wang, Caixing; Wang, Yanrong; Xu, Zhaoran; Lu, Zhipeng; Ma, Yue; et al. (14 December 2016). "All-Inorganic Perovskite Solar Cells". Journal of the American Chemical Society. 138 (49): 15829–15832. doi:10.1021/jacs.6b10227. PMID 27960305.
  145. ^ Toso, Stefano; Baranov, Dmitry; Manna, Liberato (2020-10-14). "Hidden in Plain Sight: The Overlooked Influence of the Cs + Substructure on Transformations in Cesium Lead Halide Nanocrystals". ACS Energy Letters. 5 (11): 3409–3414. doi:10.1021/acsenergylett.0c02029. ISSN 2380-8195.
  146. ^ de Bastiani, Michele; Dursun, Ibrahim; Zhang, Yuhai; Alshankiti, Buthainah A.; Miao, Xiao-He; Yin, Jun; et al. (August 2017). "Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals". Chemistry of Materials. 29 (17): 7108–7113. doi:10.1021/acs.chemmater.7b02415. hdl:10754/625296.
  147. ^ Saidaminov, Makhsud I.; Almutlaq, Jawaher; Sarmah, Smritakshi; Dursun, Ibrahim; Zhumekenov, Ayan A.; Begum, Raihana; et al. (14 October 2016). "Pure Cs PbBr: Highly Luminescent Zero-Dimensional Perovskite Solids". ACS Energy Letters. 1 (4): 840–845. doi:10.1021/acsenergylett.6b00396. hdl:10754/623102.
  148. ^ Quan, Li Na; Quintero-Bermudez, Rafael; Voznyy, Oleksandr; Walters, Grant; Jain, Ankit; Fan, James Zhangming; et al. (June 2017). "Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix". Advanced Materials. 29 (21): 1605945. Bibcode:2017AdM....2905945Q. doi:10.1002/adma.201605945. PMID 28370565. S2CID 13865296.
  149. ^ Liu, Zeke; Bekenstein, Yehonadav; Ye, Xingchen; Nguyen, Son C.; Swabeck, Joseph; Zhang, Dandan; et al. (4 April 2017). "Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs PbBr Nanocrystals". Journal of the American Chemical Society. 139 (15): 5309–5312. doi:10.1021/jacs.7b01409. OSTI 1532242. PMID 28358191.
  150. ^ Akkerman, Quinten A.; Park, Sungwook; Radicchi, Eros; Nunzi, Francesca; Mosconi, Edoardo; De Angelis, Filippo; et al. (20 February 2017). "Nearly Monodisperse Insulator Cs PbX (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX Nanocrystals". Nano Letters. 17 (3): 1924–1930. Bibcode:2017NanoL..17.1924A. doi:10.1021/acs.nanolett.6b05262. PMC 5345893. PMID 28196323.
  151. ^ Palazon, Francisco; Almeida, Guilherme; Akkerman, Quinten A.; De Trizio, Luca; Dang, Zhiya; Prato, Mirko; Manna, Liberato (10 April 2017). "Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines". Chemistry of Materials. 29 (10): 4167–4171. doi:10.1021/acs.chemmater.7b00895. PMC 5445717. PMID 28572702.
  152. ^ Wang, Kun-Hua; Wu, Liang; Li, Lei; Yao, Hong-Bin; Qian, Hai-Sheng; Yu, Shu-Hong (11 July 2016). "Large-Scale Synthesis of Highly Luminescent Perovskite-Related CsPb Br Nanoplatelets and Their Fast Anion Exchange". Angewandte Chemie International Edition. 55 (29): 8328–8332. doi:10.1002/anie.201602787. PMID 27213688.
  153. ^ Dursun, Ibrahim; De Bastiani, Michele; Turedi, Bekir; Alamer, Badriah; Shkurenko, Aleksander; Yin, Jun; et al. (1 August 2017). "CsPb2Br5 Single Crystals: Synthesis and Characterization". ChemSusChem. 10 (19): 3746–3749. Bibcode:2017ChSCh..10.3746D. doi:10.1002/cssc.201701131. hdl:10754/625293. PMID 28766308.
  154. ^ Mercouri G. Kanatzidis; Ke, Weijun (2019-02-27). "Prospects for low-toxicity lead-free perovskite solar cells". Nature Communications. 10 (1): 965. Bibcode:2019NatCo..10..965K. doi:10.1038/s41467-019-08918-3. ISSN 2041-1723. PMC 6393492. PMID 30814499.
  155. ^ Wang, Xingtao; Zhang, Taiyang; Lou, Yongbing; Zhao, Yixin (2019). "All-inorganic lead-free perovskites for optoelectronic applications". Materials Chemistry Frontiers. 3 (3): 365–375. doi:10.1039/C8QM00611C. ISSN 2052-1537. S2CID 139457176.
  156. ^ Zhang, Yuhai; Yin, Jun; Parida, Manas R.; Ahmed, Ghada H.; Pan, Jun; Bakr, Osman M.; et al. (27 June 2017). "Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals". The Journal of Physical Chemistry Letters. 8 (14): 3173–3177. doi:10.1021/acs.jpclett.7b01381. PMID 28644033.
  157. ^ Zhou, Lei; Liao, Jin-Feng; Huang, Zeng-Guang; Wang, Xu-Dong; Xu, Yang-Fan; Chen, Hong-Yan; et al. (2018-10-12). "All-Inorganic Lead-Free Cs 2 PdX 6 (X = Br, I) Perovskite Nanocrystals with Single Unit Cell Thickness and High Stability". ACS Energy Letters. 3 (10): 2613–2619. doi:10.1021/acsenergylett.8b01770. ISSN 2380-8195. S2CID 139643663.
  158. ^ a b Jellicoe, Tom C.; Richter, Johannes M.; Glass, Hugh F. J.; Tabachnyk, Maxim; Brady, Ryan; Dutton, Siân E.; et al. (9 March 2016). "Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals". Journal of the American Chemical Society. 138 (9): 2941–2944. doi:10.1021/jacs.5b13470. PMID 26901659.
  159. ^ Chen, Lin-Jer; Lee, Chia-Rong; Chuang, Yu-Ju; Wu, Zhao-Han; Chen, Chienyi (15 December 2016). "Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application". The Journal of Physical Chemistry Letters. 7 (24): 5028–5035. doi:10.1021/acs.jpclett.6b02344. PMID 27973874.
  160. ^ Volonakis, George; Filip, Marina R.; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J.; Giustino, Feliciano (2016-04-07). "Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals". The Journal of Physical Chemistry Letters. 7 (7): 1254–1259. arXiv:1603.01585. Bibcode:2016arXiv160301585V. doi:10.1021/acs.jpclett.6b00376. ISSN 1948-7185. PMID 26982118. S2CID 33993832.
  161. ^ Creutz, Sidney E.; Crites, Evan N.; De Siena, Michael C.; Gamelin, Daniel R. (2018-02-14). "Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials". Nano Letters. 18 (2): 1118–1123. Bibcode:2018NanoL..18.1118C. doi:10.1021/acs.nanolett.7b04659. ISSN 1530-6984. PMID 29376378.
  162. ^ Locardi, Federico; Cirignano, Matilde; Baranov, Dmitry; Dang, Zhiya; Prato, Mirko; Drago, Filippo; et al. (2018-10-10). "Colloidal Synthesis of Double Perovskite Cs 2 AgInCl 6 and Mn-Doped Cs 2 AgInCl 6 Nanocrystals". Journal of the American Chemical Society. 140 (40): 12989–12995. doi:10.1021/jacs.8b07983. ISSN 0002-7863. PMC 6284204. PMID 30198712.
  163. ^ Yang, Bin; Mao, Xin; Hong, Feng; Meng, Weiwei; Tang, Yuxuan; Xia, Xusheng; et al. (2018-12-12). "Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission". Journal of the American Chemical Society. 140 (49): 17001–17006. doi:10.1021/jacs.8b07424. ISSN 0002-7863. PMID 30452250. S2CID 53873996.
  164. ^ Locardi, Federico; Sartori, Emanuela; Buha, Joka; Zito, Juliette; Prato, Mirko; Pinchetti, Valerio; et al. (2019-08-09). "Emissive Bi-Doped Double Perovskite Cs 2 Ag 1– x Na x InCl 6 Nanocrystals". ACS Energy Letters. 4 (8): 1976–1982. doi:10.1021/acsenergylett.9b01274. ISSN 2380-8195. S2CID 200090300.
Kembali kehalaman sebelumnya